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Abstract. We describe the necessary and sufficient conditions for two sequences {µn}∞n=0

and {an}∞n=0 to be correspondingly the set of eigenvalues and the set of norming constants

of a Sturm-Liouville problem with real summable potential q and in advance fixed separated

boundary conditions.
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1. Introduction and statements of the results

Let us denote by L(q, α, β) the Sturm-Liouville boundary-value problem

`y ≡ −y′′ + q(x)y = µy, x ∈ (0, π), µ ∈ C,(1.1)

y(0) cosα + y′(0) sinα = 0, α ∈ (0, π],(1.2)

y(π) cos β + y′(π) sin β = 0, β ∈ [0, π),(1.3)

where q is a real-valued, summable function on [0, π] (we write q ∈ L1
R[0, π]). By L(q, α, β)

we also denote the self-adjoint operator, generated by problem (1.1)-(1.3) (see [1]). It is

well-known, that under these conditions the spectra of the operator L(q, α, β) is discrete and

consists of real, simple eigenvalues (see, e.g. [1, 2, 3]), which we denote by µn = µn(q, α, β) =

λ2n(q, α, β), n = 0, 1, 2, . . ., emphasizing the dependence of µn on q, α and β. We assume

that eigenvalues are enumerated in the increasing order, i.e.,

µ0(q, α, β) < µ1(q, α, β) < · · · < µn(q, α, β) < . . . .

In this article we consider the case α, β ∈ (0, π). It is connected with the circumstance,

that in this case the principle term of asymptotics of λn =
√
µn is n and the principle term

of asymptotics of norming constants an (see below (1.4) and (1.7a),(1.7b)) is
π

2
. The other

three cases: 1) α = π, β ∈ (0, π), 2) α ∈ (0, π), β = 0, 3) α = π, β = 0, need a separate

investigation and we do not concern it here.

c©2018 Mathematical Inverse Problems

35



Let ϕ(x, µ) = ϕ(x, µ, α, q) and ψ(x, µ) = ψ(x, µ, β, q) are the solutions of the equation

(1.1), which satisfy the initial conditions

ϕ(0, µ, α, q) = 1, ϕ′(0, µ, α, q) = − cotα,

ψ(π, µ, β, q) = 1, ψ′(π, µ, β, q) = − cot β,

respectively. The eigenvalues µn = µn(q, α, β), n = 0, 1, 2, . . ., of L(q, α, β) are the zeroes of

the characteristic function

∆(µ) := ϕ(π, µ, α, q) cot β + ϕ′(π, µ, α, q) = − (ψ(0, µ, β, q) cotα + ψ′(0, µ, β, q)) .

It is easy to see that functions ϕn(x) := ϕ(x, µn, α, q) and ψn(x) := ψ(x, µn, β, q), n =

0, 1, 2, . . ., are the eigenfunctions, corresponding to the eigenvalue µn. The squares of the

L2-norm of these eigenfunctions:

an = an(q, α, β) :=

∫ π

0

|ϕn(x)|2dx, n = 0, 1, 2, . . . ,(1.4)

bn = bn(q, α, β) :=

∫ π

0

|ψn(x)|2dx, n = 0, 1, 2, . . . ,(1.5)

are called norming constants. The sequences {µn}∞n=0, {an}∞n=0 and {bn}∞n=0 are called spec-

tral data. The famous theorem of Marchenko (see [4, 5]) asserts that two sequences {µn}∞n=0

and {an}∞n=0 ( or {µn}∞n=0 and {bn}∞n=0) uniquely determine the problem L(q, α, β) 1.

In this article we state the question:

What kind the sequences {µn}∞n=0 and {an}∞n=0 should be, to be the spectral

data for a problem L(q, α, β) with a q ∈ L1
R[0, π] and in advance fixed α and

β from (0, π)?

Such a question (but without the condition of fixed α and β and for different class of

potential q instead of our q ∈ L1
R[0, π]) was considered first by Gelfand and Levitan in work

[7] and after in many papers (we refer only some of them: [8, 9, 10]) and this problem called

the inverse Sturm-Liouville problem by ”spectral function” (see also, e.g. [11, 12]).

Our answer to above question is in the following assertion.

Theorem 1.1. For a real increasing sequence {λ2n}∞n=0 and a positive sequence {an}∞n=0 to be

spectral data for boundary-value problem L(q, α, β) with a q ∈ L1
R[0, π] and fixed α, β ∈ (0, π)

it is necessary and sufficient that the following relations hold:

1) the sequence {λn}∞n=0 has asymptotic form

(1.6a) λn = n+
ω

n
+ ln,

1Recently Ashrafyan has found a new kind of extension of Marchenko theorem, see [6].
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where ω = const,

(1.6b) ln = o

(
1

n

)
, when n→∞,

and the function l(·), defined by formula

(1.6c) l(x) =
∞∑
n=1

ln sinnx,

is absolutely continuous on arbitrary segment [a, b] ⊂ (0, 2π), i.e.

(1.6d) l ∈ AC(0, 2π);

2) the sequence {an}∞n=0 has asymptotic form

(1.7a) an =
π

2
+ sn,

where

(1.7b) sn = o

(
1

n

)
, when n→∞,

and the function s(·), defined by formula

(1.7c) s(x) =
∞∑
n=1

sn cosnx,

is absolutely continuous on arbitrary segment [a, b] ⊂ (0, 2π), i.e.

(1.7d) s ∈ AC(0, 2π);

3)

(1.8)
1

a0
−

1

π
+
∞∑
n=1

( 1

an
−

2

π

)
= cotα,

4)

(1.9)
a0(

π
∏∞

k=1
µk−µ0
k2

)2 − 1

π
+
∞∑
n=1

(
ann

4(
π[µ0 − µn]

∏∞
k=1,k 6=n

µk−µn
k2

)2 − 2

π

)
= − cot β.

In what follows, under condition (1.6) we understand the conditions (1.6a)–(1.6d) and

under condition (1.7) the conditions (1.7a)–(1.7d).

To prove Theorem 1.1 we use the following assertion, which has independent interest.
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Theorem 1.2. Let q ∈ L1
R[0, π] and α, β ∈ (0, π). Then for norming constants an =

an(q, α, β) and bn = bn(q, α, β) the following relations are valid

1

a0
−

1

π
+
∞∑
n=1

( 1

an
−

2

π

)
= cotα,(1.10)

1

b0
−

1

π
+
∞∑
n=1

( 1

bn
−

2

π

)
= − cot β.(1.11)

Similar results we have obtained in [13] for the case q ∈ L2
R[0, π]. In that case instead of

(1.6) we had

(1.12) λn = n+
ω

n
+ ln, where ln =

ωn

n
, {ωn}∞n=0 ∈ l2,

and instead of (1.7) we had

(1.13) an =
π

2
+ sn, where sn =

κn

n
, {κn}∞n=0 ∈ l2.

The aim of this paper is to show that when we change the condition q ∈ L2
R[0, π] to

q ∈ L1
R[0, π], we must change (1.12) by (1.6) and (1.13) by (1.7). We should say, that the

asymptotics (1.6) and (1.7) have the roots in paper of Zhikov [9]. Also we must note that

conditions (1.9) and (1.11) are equivalent. It is a corollary of the fact, that norming constants

bn = bn(q, α, β), n = 0, 1, 2, . . ., (see (1.5)) can be represented by spectral data {µn}∞n=0 and

norming constants {an}∞n=0 by the formulae (see [13])

1

b0
=

a0

π2
(∏∞

k=1
µk−µ0
k2

)2 ,(1.14)

1

bn
=

ann
4

π2[µ0 − µn]2
(∏∞

k=1,k 6=n
µk−µn
k2

)2 , n = 1, 2, . . . .(1.15)

In the same time Theorem 1.2 stay valid if we change the case q ∈ L2
R[0, π] to the case

q ∈ L1
R[0, π]

The inverse Sturm-Liouville problem with fixed α and β from (0, π) and q ∈ L2
R[0, π] was

investigated in [14], and for the case α = π, β ∈ (0, π) in [15], in original statement of

a question, and the solution of these problems the authors reduced to analysis of inverse

Sturm-Liouville problem with Dirichlet boundary conditions (y(0) = 0, y(π) = 0, which

corresponds to α = π, β = 0), which was in detail investigated in book [16]. We can say, that

the problems, solved in [14, 15], are not the inverse problems by ”spectral function”, but these

problems are deeply connected with the inverse problems by ”spectral function”, and [14, 15]

play an important role in development of inverse problems. After, the authors of paper [17]
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was studied the solution of inverse Sturm-Liouville problem L(q, π, β) (i.e. α = π, β ∈ (0, π))

with q ∈ L2
R[0, π] in terms of eigenvalues and ”norming constants” {νn}∞n=0 (see (1.3) in [17]),

which they introduced for this case 2. They proved that the condition (1.11) is necessary for

norming constants bn(q, π, β) (see (1.5)). They also proved that the conditions (1.10) and

(1.11) are necesssary for norming constants of problem L(q, α, β), if sinα 6= 0 and sin β 6= 0.

Really they formulated these relations in terms of ”norming constants” {νn}∞n=0, but it is

easy to verify that these formulations are equivalent. Thus, Theorem 1.2 was proved, for the

case q ∈ L2
R[0, π], with different methods, in [17] and [13]. It is easy to see that these proofs

remain the same for the case q ∈ L1
R[0, π]. It is also must be noted, that the relations (1.10)

and (1.11) come from the paper [18] of Jodeit and Levitan.

Note that asymptotic behavior of {µn}∞n=0 and {an}∞n=0 are standard conditions for the

solvability of the inverse problem (see, e.g., [7, 8, 9, 12]). The conditions (1.8) and (1.9),

which we add to the conditions (1.6) and (1.7), guarantee that α and β, which we construct

during the solution of the inverse problem, are the same that we fixed in advance. At the

same time Theorem 1.2 says that the conditions (1.8) and (1.9), which equivalent to (1.10)

and (1.11) are necessary.

2. Auxiliary results

Consider the function a(x), defined as

(2.1) a(x) =
∞∑
n=0

(
cosλnx

an
−

cosnx

a0n

)
,

where a00 = π, a0n =
π

2
, for n = 1, 2, . . ..

Lemma 2.1. Let the sequences {λn}∞n=0 and {an}∞n=0 have the properties (1.6) and (1.7)

correspondingly. Then a ∈ AC(0, 2π).

Proof. We set

(2.2) ρn = λn − n =
ω

n
+ ln = O

(
1

n

)
.

The general term of the sum (2.1) can be rewritten as follows

2We should say, that this ”norming constants” had been introduced before in paper [19], and corresponding

uniqueness theorem (see theorem 2.3 in [17]) had been proved in [19] (see theorem 3).
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(2.3)
cosλnx

an
−

cosnx

a0n
=

cosλnx

an
−

cosnx

an
+

cosnx

an
−

cosnx

a0n
=

=
1

an
(cosλnx− cosnx) +

(
1

an
−

1

a0n

)
cosnx.

So we can rewrite the series (2.1) in the following form

(2.4) a(x) =
∞∑
n=0

1

an
(cosλnx− cosnx) +

∞∑
n=0

(
1

an
−

1

a0n

)
cosnx.

The difference (cosλnx− cosnx) can be represented as follows

(2.5) cosλnx− cosnx = cos(n+ ρn)x− cosnx =

= cosnx cos ρnx− sinnx sin ρnx− cosnx =

= − cosnx(1− cos ρnx)− sinnx sin ρnx =

= −2 sin2
ρnx

2
cosnx− ρnx sinnx− (sin ρnx− ρnx) sinnx

and for the difference

(
1

an
−

1

a0n

)
we have

(2.6)
1

an
−

1

a0n
=

1
π
2

+ sn
−

1
π
2

= −
2

π
·

sn

1 + π
2
sn

= −
2

π
· sn + qn,

where qn = o

(
1

n2

)
. From the latter relation (2.6) it follows, that for sufficiently large n we

have

(2.7)
1

an
=

1

a0n
+ o

(
1

n

)
=

2

π
+ o

(
1

n

)
.

And then, according to the relations (2.2) and (2.7), we obtain

(2.8)
1

an
(−ρnx) sinnx =

[
−

2

π
+ o

(
1

n

)][
ω

n
+ ln

]
x sinnx =

= −
2

π
ωx

sinnx

n
−

2

π
lnx sinnx+ rn sinnx,

where rn = o

(
1

n2

)
.
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Since ρn = O

(
1

n

)
and sin y − y = O (n3) for y close to zero, then

sin ρnx− ρnx = O
(
(ρnx)3

)
= O

(
1

n3

)
,(2.9)

sin2
ρnx

2
= O

(ρnx
2

)2
 = O

(
1

n2

)
.(2.10)

Thus, taking into account the relations (2.5)–(2.10) we can rewrite the function (2.4) as

follows

a(x) = a1(x) + a2(x),

where

a1(x) = −
2ωx

π

∞∑
n=1

sinnx

n
−

2x

π

∞∑
n=1

ln sinnx−
2

π

∞∑
n=1

sn cosnx,

a2(x) = −
∞∑
n=1

1

an
(sin ρnx− ρnx) sinnx−

∞∑
n=0

1

an
sin2

ρnx

2
cosnx+

+
∞∑
n=0

qn cosnx+
∞∑
n=1

rn sinnx.

Since the first sum
∑∞

n=1

sinnx

n
=
π − x

2
, for x ∈ (0, 2π), then, in particular, it belongs

to AC(0, 2π), and the second sum
∑∞

n=1 ln sinnx also belongs to AC(0, 2π) according to the

condition (1.6d) of the lemma. In its turn the sum
∑∞

n=1 sn cosnx belongs to AC(0, 2π)

according to the condition (1.7d) of the lemma. The other four sums of a2(x) converge

absolutely and uniformly on [0, 2π] and are continuous differentiable functions, and hence

belong to AC(0, 2π).

These complete the proof. �

Lemma 2.2. Let the sequences {λn}∞n=0 and {an}∞n=0 have the properties (1.6) and (1.7),

(1.8) correspondingly. Then the function F , defined in triangle 0 ≤ t ≤ x ≤ π by formula

(2.11) F (x, t) =
∞∑
n=0

(
cosλnx cosλnt

an
−

cosnx cosnt

a0n

)
,

is absolutely continuous function with respect to each variable and function

f(x) :=
d

dx
F (x, x),

is summable on (0, π), i.e. f ∈ L1(0, π).
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Proof. It is easy to see that

(2.12) F (x, t) =
1

2
[a(x+ t) + a(x− t)] .

Since, a ∈ AC(0, 2π), then we can infer that the function F (x, t) with respect to both of the

variables has the same smoothness as a(x). For the functions F (x, x) we have

(2.13) F (x, x) =
1

2
[a(2x) + a(0)] .

According to (1.8) and (2.1)

a(0) =
∞∑
n=0

(
1

an
−

1

a0n

)
= cotα,

for α ∈ (0, π). Hence a(0) has a sense and, therefore, F (x, x) too. Besides this

(2.14)
d

dx
F (x, x) =

1

2

d

dx
a(2x),

and since a ∈ AC(0, 2π), then the function a(2x) belongs to AC(0, π), and its derivative

belongs to L1
R(0, π), i.e. the function

d

dx
F (x, x) belongs to L1

R(0, π). �

3. proof of the Theorem 1.1

The proof of necessity. If {λ2n}∞n=0 are the eigenvalues and {an}∞n=0 are the norming

constants of the problem L(q, α, β), then for µn = λ2n the asymptotics (1.6) was proved

in [20], and for an the asymptotics (1.7) was proved in [21]. The necessity of connections

(1.8) and (1.9) was proved in [13] for q ∈ L2
R[0, π], and the same proof is true for the case

q ∈ L1
R[0, π].

The proof of sufficiency. In [8] there is a proof of such assertion:

Theorem 3.1 ([8]). For real numbers {λ2n}∞n=0 and {an}∞n=0 to be the spectral data for a

certain boundary-value problem L(q, α, β) with q ∈ L1
R[0, π], (α, β ∈ (0, π)), it is necessary

and sufficient that relations (1.6a)–(1.6b) and (1.7a)–(1.7b) hold, and the function F (·, ·)
has partial derivatives, which are summable with respect to each variable.

Thus, if we have a real sequence {µn}∞n=0 = {λ2n}∞n=0, which has the asymptotic representa-

tion (1.6a)–(1.6b) and a positive sequence {an}∞n=0, which has the asymptotic representation

(1.7a)–(1.7b), then, according to the Theorem 3.1, there exist a function q ∈ L1
R[0, π] and
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some constants α̃, β̃ ∈ (0, π) such that λ2n, n = 0, 1, 2, . . ., are the eigenvalues and an,

n = 0, 1, 2, . . ., are norming constants of a Sturm-Liouville problem L(q, α̃, β̃).

The function q(x) and constants α̃, β̃ are obtained on the way of solving the inverse

problem by Gelfand-Levitan method. The algorithm of that method is as follows:

First we define the function F (x, t) by formula

(3.1) F (x, t) =
∞∑
n=0

(
cosλnx cosλnt

an
−

cosnx cosnt

a0n

)
.

Note that this function is defined by {λn}∞n=0 and {an}∞n=0 uniquely. Then we solve Gelfand-

Levitan integral equation [4, 7, 8, 12]

(3.2) G(x, t) + F (x, t) +

∫ x

0

G(x, s)F (s, t)ds = 0, 0 ≤ t ≤ x,

where G(x, ·) is unknown function. Find function G(x, t), with the help of which we construct

a function

(3.3) ϕ(x, λ2) = cosλx+

∫ x

0

G(x, t) cosλtdt,

which is defined for all λ ∈ C. It is proved (see [8]) that

(3.4) −ϕ′′(x, λ2) +
(

2
d

dx
G(x, x)

)
ϕ(x, λ2) = λ2ϕ(x, λ2),

almost everywhere on (0, π), and

ϕ(0, λ2) = 1,

ϕ′(0, λ2) = G(0, 0).

If we denote

(3.5) G(0, 0) = − cot α̃,

then the solution (3.3) of equation (3.4) will satisfy the boundary condition (1.2)

ϕ(0, λ2) cot α̃ + ϕ′(0, λ2) = 0

for all λ ∈ C. Since from (3.2) follows that G(0, 0) = −F (0, 0) and from (3.1) follows that

F (0, 0) =
∞∑
n=0

(
1

an
−

1

a0n

)
, hence we get

(3.6)
∞∑
n=0

(
1

an
−

1

a0n

)
= cot α̃.

From the relation (3.6) and our condition (1.8) on the sequence {an}∞n=0 we find that α̃ = α.
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It is also proved (see, e.g., [8]) that the expression

ϕ′n(π)

ϕn(π)
=
ϕ′(π, λ2n)

ϕ(π, λ2n)

is a constant (i.e. does not depend on n), which we will denote by − cot β̃. Thus the

functions ϕ(x, λ2n), n = 0, 1, 2, . . ., are the eigenfunctions of a problem L(q, α̃, β̃), where

q(x) = 2
d

dx
G(x, x), α̃ is in advance given α and we should have β̃ equals β. We know from

the Theorem 1.2, that for problem L(q, α, β̃) it holds

1

b0
−

1

π
+
∞∑
n=1

(
1

bn
−

2

π

)
= − cot β̃.

Thus, if we obtain condition (1.11), then we guarantee that β̃ = β. But (1.11) deals with the

norming constants bn, which are not independent. We have shown in the paper [13] that we

can represent bn by an and {µk}∞k=0 by formulae (1.14), (1.15). Therefore, instead of (1.11),

we obtain the condition in the form (1.9).

This completes the proof.
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