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Abstract. In the previous works, the authors presented the fuzzy reproducing kernel

method(FRKM) for solving various boundary value problems. The nonlinear singular ini-

tial value problems including generalized Lane − Emden−type equations are investigated

by combining homotopy perturbation method (HPM) and fuzzy reproducing kernel Hilbert

space method (FRKHSM). He’s HPM is based on the use of traditional perturbation method

and homotopy technique and can reduce a nonlinear problem to some linear problems and

generate a rapid convergent series solution in most cases.FRKHSM is also an analytical tech-

nique, which can overcome the difficulty at the singular point of non-homogeneous, linear

singular initial value problems; especially when the singularity appears on the right-hand

side of this type of equations, so it can solve powerfully linear singular initial value prob-

lems. Therefore, using advantages of these two methods, more general nonlinear singular

initial value problems can be solved powerfully.Some numerical examples are presented to

illustrate the strength of the method.

Key words and phrases. Fuzzy Reproducing kernel method, Linear boundary value prob-

lems,Homotopy perturbation method.

1. Introduction

Singular initial value problems in ordinary differential equations occur in several models of

non-Newtonian fluid mechanics, mathematical physics, astrophysics, etc. [1,2]. For example,

the theory of internal structure of stars, cluster of galaxies, thermal behavior of a spherical

cloud of gas acting under the mutual attraction of its molecules and theories of thermionic

currents are modeled by means of Lane−Emden equations. The main idea of this paper is to

present an algorithm for computing the solutions of singular initial value problems including

c©2018 Mathematical Inverse Problems
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Lane−Emden-type equations of the formu′′(x) + k1

a(x)
u′(x) + k2

b(x)
u(x) + f(x, u) = g(x), 0 < x ≤ 1,

u(0) = α, u′(0) = β.
(1.1)

where α, β, k1, k2 are real constants, a(x), b(x), are continuous and maybe a(0) = 0, b(0) =

0, f(x, y) is a continuous real valued function, and g(x) ∈ c(0, 1], i. e., the case when

the function g(x) may be undefined at the origin. Such problems have attracted much

attention and have been studied by many authors [3−12]. There is considerable interest in

numerical methods on singular initial value problems. Recently, Ramose [4,5] has developed

linearization methods for the numerical solution of (1.1) with k1 = 2, a(x) = xandk2 = 0.

By applying the Adomian decomposition method, Wazwaz [6−8] has also investigated the

special case of singular initial value problem (1.1). have solved (1.1) with k1 = 2, a(x) =

x, k2 = 0andg(x) ∈ c[0, 1] by using He’s homotopy perturbation method and variational

iteration method. In these references, the authors selected g(x) as a well-defined function

at the origin. In [11], This switching from operations of calculus to algebraic operations on

transforms is called operational calculus, a very important area of applied mathematics, and

for the engineer, the fuzzy reproducing kernel Hilbert space methodsis practically the most

important operational method. The fuzzy reproducing kernel Hilbert space methods also

has the advantage that it solves problems directly without determining a general solution in

the first and obtaining non homogeneous differential equations in the second. One can see

some useful papers about fuzzy reproducing kernel Hilbert space methods in [16, 27]. Also,

there exist some recently published papers with some modifications about application of

fuzzy reproducing kernel Hilbert space methods to solve fuzzy differential equation [30, 31].

In recent years, the homotopy perturbation method (HPM), first proposed by He [23], has

successfully been applied to solve many types of linear and non- linear functional equations.

This method which is a combination of homotopy in topology, and classic perturbation

techniques, provides a convenient way to obtain analytic or approximate solutions to a wide

variety of problems arising in different fields, see [15, 17, 21, 23, 24, 25] and the references

there.

In this work, we intend to use HPM for computing the fuzzy reproducing kernel Hilbert

space methods.In this work, we will give the analytic approximation of the general singular

initial value problem (1.1) by combining He’s HPM and FRKHSM. The HPM was proposed

originally by He. This method is based on the use of traditional perturbation method

and homotopy technique. Using this method, a rapid convergent series solution can be

obtained in most cases. Usually, a few number of terms of the series solution can be used for

numerical purposes with a high degree of accuracy. The method was successfully applied to
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boundary value problems, partial differential equations and other fields .Fuzzy reproducing

kernel theory has important application in numerical analysis, Fuzzy differential equation,

probability and statistics and so on . In this work, we intend to use HPM for computing the

fuzzy reproducing kernel Hilbert space methods. The paper is organized as follows:

In section 2, Reproducing kernel method. In section 3,we present the basic notions of fuzzy

number, fuzzy valued function, fuzzy derivative, fuzzy integral and fuzzy reproducing kernel

Hilbert space methods. In section 4,we present the basic notionshomotopy perturbation

method . In section 5. homotopy perturbation method is presented and the procedure for

computing the fuzzy reproducing kernel Hilbert space methods is proposed by proving some

theorems based on the HPM and finally som examples are given. Conclusions are drawn in

section 6.

2. Reproducing kernel method

In this section, we illustrate how to solve the following linear singular initial value problem

using RKHSM:

u′′(x) + k1

a(x)
u′(x) + k2

b(x)
u(x) + f(x, u) = g0(x), 0 < x ≤ 1,

u(0) = 0, u′(0) = 0.
(2.1)

where α, β, k1, k2 are real constants, u(x) ∈ W 3
2 [0, 1], a(x), b(x) are continuous and mayby

a(0) = 0, b(0) = 0,and g0(x) ∈ c(0, 1], i. e., the case when the function f0(x) may be unde-

fined at the origin. Multiplying both sides of (3.1) by a(x), b(x), we have

Lu(x) = f(x), 0 < x ≤ 1,

u(0) = α, u′(0) = β,
(2.2)

In (5.3), put Lu(x) = a(x)b(x)u
′′
(x) + k1b(x)u

′
(x) + k2a(x)u(x), f(x) = a(x)b(x)g0(x) .

It is clear that L : Wm[0, 1] → W 1[0, 1] is a bounded linear operator.because W 1[0, 1] is a

reprodusing kernel space, there exists a reprodusing kernel k̄(x, y). for every linear operator

L,

| f(x) |=| Lu(x) |=| (Lu(y), k(x, y))Wm |≤‖ f(y) ‖m‖ k(x, y) ‖m≤ c0 ‖ f ‖m, Put

ϕi(x) = k̄(xi, y) and ψi(x) = L∗ϕi(x) where k̄(xi, y) is the reproducing kernel of W 1[0, 1], L∗

is the adjoint operator of L. The orthonormal system {ψ̄i(x)}∞i=1 of Wm[0, 1] can be derived

from the Gram-Schmidt orthogonalization process of ψi(x)∞i=1,
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(2.3) ψ̄i(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, . . .).

where βik{(i = 1, 2, . . .), (k = 1, 2, . . .)} are coefficients of Gram-Schmidt orthonormalizar-

ion and {ψ̄i(x)}∞i=1 is an orthonormal system,could be determined by solving the following

equations.

Bii =
∑m−1

i=0 ψ
(i)
i (0)ψ̄

(i)
i (0) +

∫ 1

0
ψ

(m)
i (x)ψ̄

(m)
i (x)dx

βii = 1/(
√

[
∑m−1

i=0 (ψ
(i)
i (0))2 +

∫ 1

0
(ψ

(m)
i (x))2dx−

∑i−1
i=1Bii])

βij = βii ∗ (−
∑i−1

k=j Bik ∗ βkj) (i = 1, 2, . . .), (j = 1, 2, . . . , i − 1), (k =

1, 2, . . . , i− 1). In order to solve(3.2) using RKHSM, we first construct a reproducing kernel

Hilbert space W 3
2 [0, 1] in which every function satisfies the initial conditions of (3.1).

Definition 2.1. The inner product space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {u(x)|u, u′, u′′are
absolutely continuous real value functions, u(3) ∈ L2[0, 1], u(0) = 0, u′(0) = 0}. The in-

ner product in W 3
2 [0, 1] is given by

〈u(y), v(y)〉 = u(0)v(0) + u′(0)v′(0) + u(1)v(1) +
∫ 1

0
u(3)v(3)dy,

and the norm‖u‖W =
√
〈u(y), u(y)〉,where u, v∈W 3

2 [0, 1]

According to [1, 6], we have the following theorem:

Theorem 2.0.1. For (5.1), if {xi}∞i is dense on [0,1], then ψi(x)∞i=1 is the complete sestem

of Wm[0, 1] and ψi(x) = Lsk(x, s)|s=xi .

Proof.

From ϕi(x) = k̄(xi, y) and ψi(x) = L∗ϕi(x) we have ψi(x) ∈ Wm[0, 1] (i = 1, 2, . . .).

on the other hand, for any u(x) ∈ Wm[0, 1], it has

, soppose, (u(x), ψi(x))=0

namely (u(x), (L∗φi(x)))=(Lu(.), φi(.))=(Lu)(xi))=0

Since {xi}∞i is dense on [0,1] so that (Lu)(x)=0

yield u(x)=0

and ψi(x) = (L∗φi)(x)=((L∗φi)(s), k(x, s))=(φi(s), Lsk(x, s))=Lsk(x, s)

The proof is complete.
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Theorem 2.0.2. If {xi}∞i=1 is dense on[0,1] and the solution of

Proof. u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), if 0 < x < 1; (1.1)

u(0) = 0, u(1) = 0

is unique, then the solution of (5.1) is

(2.4) u(x) =
∞∑
j=1

Ajψj(x)

where

Aj =

j∑
l=1

βjlf(xl)

Proof.

u(x) =
∞∑
j=1

〈u(x), ψj〉ψj(x) =
∞∑
j=1

j∑
l=1

βjl〈u(x), L∗ϕj(x)〉ψj(x)

=
∞∑
j=1

j∑
l=1

βjl〈Lu(x), ϕj(x)〉ψj(x)

=
∞∑
j=1

j∑
l=1

βjl〈f(x), ϕj(x)〉ψj(x)

=
∞∑
j=1

j∑
l=1

βjlf(xl)ψj(x) =
∞∑
j=1

Ajψj(x)

2

Now, the approximate solution u(x) can be obtained by taking finitely many terms in the

series representation of u(x) and

(2.5) uN(x) =
N∑
j=1

Ajψj(x)

Remark 2.0.3. Since Wm[0, 1] is a Hilbert space,ifu is solution of Lu=f

u(x) =
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x)

Since {ψi}∞i=1 is a normal basis for Wm[0, 1]. the square sum of the Fourier coefficients of u
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is convergent.

∞∑
i=1

(
i∑

k=1

βikf(xk))

2

<∞

Therefore, the sequence uN is convergent in the sense of norm ‖ . ‖

‖ uN(x) ‖=‖
N∑
i=1

i∑
k=1

βikf(xk)ψi(x) ‖≤‖
N∑
i=1

i∑
k=1

βikf(xk) ‖

Lemma 2.0.4. If u(x) ∈ Wm[0, 1], then there exists a constant c such that | u(x) |≤ c ‖
u(x) ‖m, | u(k)(x) |≤ c ‖ u(x) ‖m, 1 ≤ k ≤ m− 1.

Proof. Since

| u(x) |=| (u(y), k(x, y))m |≤‖ u(y) ‖m‖ k(x, y) ‖m,
there exists a constant c0 such that

c0 =‖ k(x, y) ‖m∈ Wm[0, 1]

| u(x) |≤ c0 ‖ u ‖m
Note that

| u(i)(x) |=| (u(y), ∂
ik(x,y)
∂xi

)m |
≤‖ u ‖4‖ ∂ik(x,y)

∂xi
‖m

≤ ci ‖ u ‖m, (i = 0, 1, 2, ...,m− 1),

where ci are constants.

Putting c = max0≤i≤m−1ci and the proof of the lemma is complete.

Theorem 2.0.5. The approximate solution un(x) and its derivatives u
(k)
n (x), 1 ≤ k ≤ m− 1

are all uniformly convergent.

Proof. We know

un(x)− u(x) = (un(y)− u(y), k(x, y))Wm

ukn(x)− uk(x) = (un(x)− u(x))(k) = ∂k

∂xk
((un(y)− u(y), k(x, y))Wm)

= (un(y)− u(y), ∂k

∂xk
k(x, y))Wm

∂k

∂xk
k(x, y) ∈ Wm[0, 1], one obtains

| ukn(x)− uk(x) |≤‖ un(y)− u(y) ‖Wm‖ ∂k

∂xk
k(x, y) ‖

Also

‖ ∂k

∂xk
k(x, y) ‖Wm is continuous with respect to x in [0, 1], then
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| ukn(x)− uk(x) |≤M ‖ un(y)− u(y) ‖Wm

where M is a positive number.

So that

limx→n un(x) = u(x)⇒ limx→n u
k
n(x) = uk(x). because1 ≤ k ≤ m− 1∈ Wm[0, 1]

Theorem 2.0.6. The space W 3
2 [0, 1] is a reproducing kernel Hilbert space. That is, there

exists Rx(y) ∈ W 3
2 [0, 1], for any u(y) ∈ W 3

2 [0, 1] and each fixed x ∈ [0, 1], y ∈ [0, 1], such that

(u(y), Rx(y))W 3
2

= u(x). The reproducing kernel Rx(y)) can be denoted by


y2(−(x2(−126+10x−5x2+x3))+5(−1+x)xy2−(−1+x2)y3)

120
, y ≤ x,

−(x2(−5x2(−1+y)y+x3(−1+y2)+y2(−126+10y−5y2+y3)))
120

, y > x.
(2.6)

For the proof of this theorem and the method of obtaining reproducing kernel Rx(y),refer to

[37, 38].

3. Fuzzy set

We represent an arbitrary fuzzy number by an ordered pair function (u(r), u(r)), which

satisfies the following requirements [26]:

a: u(r) is abounded monotonic increasing left continuous function,

b: u(r) is abounded monotonic decreasing left continuous function,

c: u(r) ≤ u(r) , 0 ≤ r ≤ 1.

A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1. We recall that for

a < b < c which a, b, c ∈ R, the triangular fuzzy number u = (a, b, c) are determined by

a, b, c such that u(r) = a + (b− c)r and u(r) = c− (c− b)r are the endpoints of the r-level

sets, for all r ∈ [0, 1]. Let E be the set of all fuzzy number on <.

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k > 0, we define addition u ⊕ v , sub-

traction u	 v and scalar multiplication by k as [22].

a) Addition:

u⊕ v = (u(r) + v(r), u(r) + v(r)) ,

b) subtraction:

u	 v = (u(r)− v(r), u(r)− v(r)) ,

c) scalar multiplication:

k � u =

{ (ku, ku) k ≥ 0

,

(ku, ku), k < 0
if k = −1 then k � u = −u.
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Definition 3.1. [29] For arbitrary fuzzy numbers u = (u(r), u(r)) and v = (v(r), v(r)), we

show the Hausdorff distance between u and v by D(u, v), and take D : E ×E −→ <+ ∪ (0)

. Also, we know (E,D) is a complete metric space, thus:

D(u, v) = sup
0≤r≤1

{max[|u(r)− v(r)|, |u(r)− v(r)|]},

We have following traits for Hausdorff distance; per u, v, e, f ∈ E and all k ∈ <:

i) D(u+ e, v + e) = D(u, v),

ii) D(ku, kv) = |k|D(u, v),

iii) D(u+ v, e+ f) ≤ D(u, e) +D(v, f).

Definition 3.2. [22] Let f : < −→ E be a fuzzy-valued function. If for arbitrary fixed

x0 ∈ < and ε > 0, a δ > 0 such that

|x− x0| < δ ⇒ D(f(x), f(x0)) < ε,

f is said to be continuous.

Definition 3.3. [32] A mapping f : <×E −→ E is called continuous at point (t0, x0) ∈ <×E
provided for any fixed r ∈ [0, 1] and arbitrary ε > 0, there exists an δ(ε, r) > 0, such that

D([f(t, x)]r, [f(t0, x0)]r) < ε,

whenever |t− t0| < δ and D([x]r, [x0]r) < δ(ε, r) for all t ∈ <, x ∈ E.

Theorem 3.0.1. [33] Let f(x) be a fuzzy value function on [a, b] and it is represented by

(f(x, r), f(x, r)) for r ∈ [0, 1], assume f(x, r) are Riemann-integrable on [a, b] for every b ≥ a

and assume. There are two positive values M(r) and M(r) such that∫ b

a

|f(x, r)|dx ≤M(r) ,

and ∫ b

a

|f(x, r)|dx ≤M(r) ,

for every b ≥ a .

Then f(x) is improper fuzzy Riemann-integrable on [a,∞) and is a fuzzy number. further-

more, we have: ∫ ∞
a

f(x)dx = (

∫ ∞
a

f(x)dx,

∫ ∞
a

f(x)dx) .
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Proposition 1. [34] If f(x) and g(x) are fuzzy value functions and fuzzy Riemann-

integrable on [a,∞) then f(x) + g(x) is fuzzy Riemann-integrable on [a,∞).

Moreover , we have: ∫
l

(f(x)⊕ g(x))dx =

∫
l

f(x)dx⊕
∫
l

g(x)dx .

It is well-known that the H-derivative (differentiability in the sense of Hukuhara) for fuzzy

mappings was initially introduced by Puri and Ralescu [28] and it is based in the H-difference

of sets, as follows.

Definition 3.4. Suppose x, y ∈ E. If there exists z ∈ E such that x = y ⊕ z, then z is

called the H-difference of x and y, and it is denoted by x−h y.

In this paper, the sign ”−h” always stands for H-difference and also note that x−h y 6= x	y.

We consider the following definition which was introduced by Bede et al. [18].

Theorem 3.0.2. [20] Let f : R −→ E be a function and denote f(t) = (f(t, r), f(t, r)) for

each r ∈ [0, 1]. Then

(1) If f is (i)-differentiable, then f(t, r) and f(t, r) are differentiable functions and f ′(t) =

(f ′(t, r), f
′
(t, r)),

(2) If f is (ii)-differentiable, then f(t, r) and f(t, r) are differentiable functions and f ′(t) =

(f
′
(t, r), f ′(t, r)).

Definition 3.5. .Let Ω be the universal set, A fuzzy set on Ω , is the set X ⊂ Ω with

membership function

µx : Ω→ [0, 1],x→ µx(x)

Definition 3.6. .(α− cut of a fuzzy set).
Theα-cut of a fuzzy set X ⊂ Ω is the set Xα = {x ∈ Ω|µx(x) > α, α ∈ [0, 1]}.

Definition 3.7. . T-Norm

A triangular norm or T-norm is the function T : [0, 1]2 → [0; 1], that for all x; y; z ∈
[0; 1]satisfy:

T1commutativity: T (x; y) = T (y;x);

T2associativity: T (x;T (y; z)) = T (T (x; y); z);

T3 monotonicity:(y 6 z) =⇒ T (x; y) 6 T (x; z);

T4 boundary condition T (x; 1) = x.

9



Using n ∈ Nand associativity, a multiple-valued extension

Tn : [0; 1]n → [0; 1] of a T-norm T is given by Tn(x1;x2; . . . ;xn) = T (x1;Tn−1(x2;x3; . . . ;xn):

We will use T to denote Tor Tn Intersection kernel on Fuzzy Sets The intersection of two

fuzzy sets

X;Y ∈ F (s ⊂ Ω) is the fuzzy setX ∩ Y ∈ F (s ⊂ Ω)with membership function

µX ∩ Y : Ω→ [0, 1]

x→ µX ∩ Y = T (µX(x), µY (x))

where T is a T-norm operator. Using this fact, we define the intersection kernel on fuzzy

sets as follows:

Definition 3.8. .(Intersection Kernel on Fuzzy Sets). Let X;Y be two fuzzy sets in F (s ⊂
Ω), the intersection kernel on fuzzy sets is the function

k : F (s ⊂ Ω)× F (s ⊂ Ω→ R, (X, Y )→ k(X, Y ) = g(X ∩ Y )

where g is the mapping g : F (s ⊂ Ω)→ [0,∞], X → g(X).

The mapping g plays an important role assigning real values to the intersection fuzzy set

X ∩ Y . We can think about this function as a similarity measure between two fuzzy sets

and its design will be highly dependent of the problem and the data. For instance, our

first choice for g uses the fact that the support of X ∩ Y , has finite decomposition, that

is, (X ∩ Y )>0 = ∪i∈IAi ∈ s
of pairwise disjoint sets {A1;A2; . . . ;AN}. We can measure its support using the measureρ :

s→ [0,∞] as follows:

ρ((X ∩Y )>0) = ρ(∪i∈I) =
∑

i∈I ρ(Ai) The idea to include fuzziness is to weight eachρ(Ai)by

a value given by the contribution of the membership function on all the elements of the

setAi. Next, we give a definition of a intersection kernel on fuzzy sets using the concept of

measure and membership function.

Definition 3.9. (Intersection Kernel on Fuzzy Sets with measure ρ)

Let ∪i∈IAi ∈ s a finite decomposition of the support of the intersection fuzzy set(X ∩ Y ) ∈
F (s ⊂ Ω) as defined before. Let g be the function g : F (s ⊂ Ω)→ [0,∞]

(X ∩ Y )→ g(X ∩ Y ) =
∑
i∈I

µX ∩ Y (Ai)ρ(Ai)

where

µX ∩ Y (Ai) =
∑
x∈Ai

µX ∩ Y (x)

10



We define the Intersection Kernel on Fuzzy Sets with measure ρ as

k(X, Y ) = g(X ∩ Y ) =
∑
i∈I

µX ∩ Y (Ai)ρ(Ai)

Using the T-norm operator, the intersection kernel on fuzzy sets with measure ρ given by

(12) can be written as

k(X, Y ) =
∑
i∈I

µX ∩ Y (Ai)ρ(Ai) =
∑
i∈I

∑
x∈Ai

µX ∩ Y (x)ρ(Ai)

=
∑
i∈I

∑
x∈Ai

T (µX(x), µY (x))ρ(Ai)

The next step is to determine which intersection kernels on fuzzy sets with measure ρ are

positive definite, that is, which intersection kernels are reproducing kernels of some RKHS.

Definition 3.10. W 3
2[0, 1] = {u(x, r)|u(t, r), u′(t, r), u′′(t, r), absolutely continuous real value,

u(3)(t, r) ∈ L2[0, 1], u(0, r) = 0, u′(0, r) = 0}.
Also

W
3

2[0, 1] = {u(x, r)|u(t, r), u′(t, r), u′′(t, r), absolutely continuous real value, u(3)(t, r) ∈ L2[0, 1],

u(0, r) = 0, u′(0, r) = 0}.
The inner product in (W 3

2[0, 1],W
3

2[0, 1]) is given by

〈u(y, r), v(y, r)〉 = u(0, r)v(0, r) + u′(0, r)v′(0, r) + u(1, r)v(1, r) +

∫ 1

0

u(3)(y, r)v(3)(y, r)dy,

and the norm

‖u(y, r)‖W =
√
〈u(y), u(y)〉, whereu, v ∈ W 3

2[0, 1]

and

〈u(y, r), v(y, r)〉 = u(0, r)v(0, r) + u′(0, r)v′(0, r) + u(1, r)v(1, r) +

∫ 1

0

u(3)(y, r)v(3)(y, r)dy,

and the norm

‖u(y, r)‖W =
√
〈u(y), u(y)〉, whereu, v ∈ W 3

2[0, 1]
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therefore

(〈u(y, r), v(y, r)〉, 〈u(y, r), v(y, r)〉) =

(u(0, r)v(0, r) + u′(0, r)v′(0, r) + u(1, r)v(1, r) +

∫ 1

0

u(3)(y, r)v(3)(y, r)dy,

u(0, r)v(0, r) + u′(0, r)v′(0, r) + u(1, r)v(1, r) +

∫ 1

0

u(3)(y, r)v(3)(y, r)dy)

and

(‖u(y, r)‖W , ‖u(y, r)‖W ) = (
√
〈u(y), u(y)〉,

√
〈u(y), u(y)〉)

Definition 3.11. The orthonormal system {ψ̄i(x)}∞i=1 of Wm[0, 1] can be derived from the

Gram-Schmidt orthogonalization process of {ψ
i
(x, r), ψi(x, r)}∞i=1,

(3.1) (ψ̄
i
(x, r), ψ̄i(x, r)) = (

i∑
k=1

β
ik
ψ
k
(x, r),

i∑
k=1

βikψk(x, r)), (β
ii
, βii) > 0, i = 1, 2, . . . .

where (β
ik
, βik){(i = 1, 2, . . .), (k = 1, 2, . . .)} are coefficients of Gram-Schmidt orthonor-

malizarion and {(ψ̄
i
(x, r), ψ̄i(x, r))}∞i=1 is an orthonormal system,could be determined by

solving the following equations.

Bii =
m−1∑
i=0

ψ(i)

i
(0, r)ψ̄

(i)

i
(0, r) +

∫ 1

0

ψ(m)

i
(x, r)ψ̄

(m)

i
(x, r)dx

and

Bii =
m−1∑
i=0

ψ
(i)

i (0, r)ψ̄
(i)

i (0, r) +

∫ 1

0

ψ
(m)

i (x, r)ψ̄
(m)

i (x, r)dx

β
ii

= 1/(

√√√√[
m−1∑
i=0

(ψ(i)

i
(0, r))2 +

∫ 1

0

(ψ(m)

i
(x, r))2dx−

i−1∑
i=1

Bii])

and

βii = 1/(

√√√√[
m−1∑
i=0

(ψ
(i)

i (0, r))2 +

∫ 1

0

(ψ
(m)

i (x, r))2dx−
i−1∑
i=1

Bii])

(β
ij
, βij) = (β

ii
∗ (−

i−1∑
k=j

Bik ∗ βkj), βii ∗ (−
i−1∑
k=j

Bik ∗ βkj))

(i = 1, 2, . . .), (j = 1, 2, . . . , i− 1), (k = 1, 2, . . . , i− 1).
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4. Homotopy perturbation method

To illustrate the homotopy perturbation method (HPM) for solving non-linear differential

equations, He [23, 24] considered the following non-linear differential equation:

(4.1) A(u) = F (r); r ∈ Ω,

subject to the boundary condition

(4.2) B(u,
∂u

∂n
) = 0; r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic

function, Γ is the boundary of the domain Ω and , ∂
∂n

denotes differentiation along the normal

vector drawn outwards from Ω. The operator A can generally be divided into two parts M

and N therefore, (1) can be rewritten as follows:

(4.3) M(u) +N(u) = F (r); r ∈ Ω.

He [23, 24] constructed a homotopy v(r, p) : Ω× [0, 1]→ R which satisfies

(4.4) H(v, p) = (1− p)[M(v)−M(u0)] + p[A(v)− f(r)] = 0.

Which is equivalent to

(4.5) H(v, p) = M(v)−M(u0) + pM(u0) + p[N(v)− f(r)] = 0,

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation of (1).

Obviously, we have

(4.6) H(v, 0) = M(v)−M(u0) = 0; H(v, 1) = A(v)− F (r) = 0.

The changing process of p from zero to unity is just that of H(v, p) from M(v)−M(u0) to

A(v) − F (r). In topology, this is called deformation and M(v) −M(u0) and A(v) − F (r)

are called homotopic. According to the homotopy Perturbation method, the parameter p is

used as a small parameter, and the solution of Eq.(4) can be expressed as a series in p in

the form

(4.7) u = v0 + pv1 + p2v2 + p3v3 + · · · .

When p → 1, Eq. (4) corresponds to the original one. Eq. (7) becomes the approximate

solution of Eq. (3), i.e.,

(4.8) u = lim
p→1

v = v0 + v1 + v2 + v3 + · · · ,

The combination of perturbation method and homotopy method is called the HPM, which

has eliminated the limitations of traditional perturbation methods. On the other hand,
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this technique is of full advantage of traditional perturbation techniques. Series (2.9) is

convergent in most cases. However, the convergent rate depends on the nonlinear operator

A(V ) (the following opinions are suggested by He [19])

(1) The second derivative of N(V ) with respect to V must be small because the parameter

may be relatively large, i.e.,p→ 1.

(2) The norm of L−1( δN
δV

) must be smaller than one so that the series converges.

5. The application of HPM and FRKHSM to Solveing(1.1)

Analysis:Consider the fuzzy differential equation problem including Lane - Emden - type

equation of form

u
′′
(x) + k1

a(x)
u
′
(x) + k2

b(x)
u(x) + f(x, u) = g(x), 0 l x 6 1,

u(0) = α, u,(0) = β
(5.1)

The solution of equation can be expressed in following function:

Lu(x) = f(x)

Where

Lu(x) = a(x)b(x)u
′′
(x) + k1b(x)u

′
(x) + k2a(x)u(x), f(x) = a(x)b(x)g(x)

If the crisp function u(x), f(x) is continuous in the metric D,it is definite function exists.

Furthermore

Lu
−

(x, r) = f
−

(x, r),

and

Lū(x, r) = f̄(x, r).

It shoud be noted that the fuzzy function cac be also defined using the Deravitive approach.

Generally the integral of Eq.(x)and Eq.(y) are complicated and can not be expressed in term

of elementary functions nor conveniently tabulated in open literature. However, this method

is powerful tool to calculate such difficult fuzzy equations.We construcr the following homo-

topy with
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M
−

(x, r) = k2a−
(x, r)u

−
(x, r),

M̄(x, r) = k2ā(x, r)ū(x, r),

and

N
−

(x, r) = a
−

(x, r)b
−

(x, r)u
′′

−
(x, r)

N̄(x, r) = ā(x, r)b̄(x, r)ū′′(x, r),
M
−

(u, r)−M
−

(u0, r) + pM
−

(u0, r) + p[N
−

(v0, r)− f
−

(x, r)] = 0,

M̄(u, r)− M̄(u0, r) + pM̄(u0, r) + p[N̄(v0, r)− f̄(x, r) = 0.
(5.2)

Substituting (7) into (12) . And equating cofficients of like power of p, we obtain:



M
−

(v0, r)−M− (u0, r) = a
−

(x, r)b
−

(x, r)u
−

′′

0

(x, r) + k1 b−
(x, r)u

−

′

0

(x, r)+

k2a−
(x, r)u

−0

(x, r)− g
−

(x, r) = 0, u0
−

(0, r) = α
−
, u0
−

′
(0, r) = β

−
,

M̄(v0, r)− M̄(u0, r) = ā(x, r)b̄(x, r)ū
′′
0 (x, r) + k1b̄(x, r)ū

′
0(x, r)+

k2ā(x, r)ū0(x, r)− ḡ(x, r) = 0, ū0(0, r) = ᾱ, ū
′
0(0, r) = β̄,

(5.3)



M
−

(v1, r) +M
−

(u0, r) +N
−

(v0, r)− a
−

(x, r)b
−

(x, r)g
−

(x, r)

= a
−

(x, r)b
−

(x, r)u
′′
1
−

(x, r) + k1 b−
(x, r)u

′
1
−

(x, r) + k2a−
(x, r)u1

−
(x, r)+

a
−

((x, r)(u, r))b
−

((x, r)(u, r))g
−

((x, r)(u, r)) = 0, u1
−

(0, r) = 0, u1
−

′
(0, r) = 0,

M̄(v1, r)− M̄(u0, r) + N̄(v0, r)− ā(x, r)b̄(x, r)ḡ(x, r) =

ā(x, r)b̄(x, r)ū
′′
0 (x, r) + k1b̄(x, r)ū

′
1(x, r) + k2ā(x, r)ū1(x, r)+

ā((x, r)(u, r))b̄((x, r)(u, r))ḡ((x, r)(u, r)) = 0, ū1(0, r) = 0, ū
′
1(0, r) = 0

(5.4)



M
−

(v2, r) +N
−

(v1, r) = a
−

(x, r)b
−

(x, r)u
′′
2
−

(x, r) + k1 b−
(x, r)u

′
2
−

(x, r) + k2a−
(x, r)u2

−
(x, r)+

da
−

((x,r)(u,r)) b
−

((x,r)(u,r))g
−

((x,r)(u,r))

dp
= 0, u2

−
(0, r) = 0, u2

−

′
(0, r) = 0,

M̄(v2, r) + N̄(v1, r) = ā(x, r)b̄(x, r)ū
′′
2 (x, r) + k1b̄(x, r)ū

′
2(x, r) + k2ā(x, r)ū2(x, r)+

dā((x,r)(u,r))b̄((x,r)(u,r))ḡ((x,r)(u,r))
dp

= 0, ū2(0, r) = 0, ū
′
2(0, r) = 0

(5.5)

...



M
−

(vm, r) +N
−

(vm−1, r) = a
−

(x, r)b
−

(x, r)u
′′
m
−

(x, r) + k1 b−
(x, r)u

′
m
−

(x, r) + k2a−
(x, r)um

−
(x, r)+

dm−1a
−

((x,r)(u,r)) b
−

((x,r)(u,r))g
−

((x,r)(u,r))

(m−1)!dpm−1 = 0, um
−

(0, r) = 0, um
−

′
(0, r) = 0,

M̄(vm, r) + N̄(vm−1, r) = ā(x, r)b̄(x, r)ū′′m(x, r) + k1b̄(x, r)ū
′
m(x, r) + k2ā(x, r)ūm(x, r)+

dm−1ā((x,r)(u,r))b̄((x,r)(u,r))ḡ((x,r)(u,r))

(m−1)!dpm−1 = 0, ūm(0, r) = 0, ū′m(0, r) = 0

(5.6)
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To solve the above equation , we use the FRKHSM presented in section x and obtainu0
−
, u1
−
, u2
−
, . . .

ū0, ū1, ū2, . . .


u0
−

(x, r) =
∑∞

i=1

∑i
k=1 βik

−
f
−0

(xk, r)ψ
−i

(x, r)

ū0(x, r) =
∑∞

i=1

∑i
k=1 β̄ikf̄0(xk, r)ψ̄i(x, r)

(5.7)


u1
−

(x, r) =
∑∞

i=1

∑i
k=1 βik

−
f
−1

(xk, r)ψ
−i

(x, r)

ū1(x, r) =
∑∞

i=1

∑i
k=1 β̄ikf̄1(xk, r)ψ̄i(x, r)

(5.8)


u2
−

(x, r) =
∑∞

i=1

∑i
k=1 βik

−
f
−2

(xk, r)ψ
−i

(x, r)

ū2(x, r) =
∑∞

i=1

∑i
k=1 β̄ikf̄2(xk, r)ψ̄i(x, r)

(5.9)

...
um
−

(x, r) =
∑∞

i=1

∑i
k=1 βik

−
f
−m

(xk, r)ψ
−i

(x, r)

ūm(x, r) =
∑∞

i=1

∑i
k=1 β̄ikf̄m(xk, r)ψ̄i(x, r)

(5.10)

where

f
−0

(xk, r) = a
−

(xk, r)b−
(xk, r)g

−
(xk, r)− k1β

−
b
−

(xk, r) + k2a−
(xk, r)(α−

+ β
−

(xk, r)),

f̄0(xk, r) = ā(xk, r)b̄(xk, r)ḡ(xk, r)− k1β̄b̄(xk, r) + k2ā(xk, r)(ᾱ + β̄(xk, r)),

f
−1

(xk, r) = −a
−

(xk, r)b−
(xk, r)f

−
((xk, r), (u, r))|p=0(x, r),

f̄1(xk, r) = −ā(xk, r)b̄(xk, r)f̄((xk, r), (u, r))|p=0(x, r),

...

f
−m

(xk, r) = a
−

(xk, r)b−
(xk, r)

dm−1f
−

((xk, r), (u, r))

(m− 1)!dpm−1
|p=0(x, r),

f̄m(xk, r) = ā(xk, r)b̄(xk, r)
dm−1f̄((xk, r), (u, r))

(m− 1)!dpm−1
|p=0(x, r).

Therefore, the approximate solution of (1.1) and m-term approximation to this solution are

obtained

U−(x, r) =
∑∞

k=0 u−k
(x, r)

Ū(x, r) =
∑∞

k=0 ūk(x, r)
(5.11)
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Now, the approximate solution Ūm,n(x, r),U
−m,n

(x, r) can be obtained by the n-term intercept

of the ūk(x, r) ,u
−k

(x, r),k = 0, 1, 2, . . . ,and


U
−m.n

(x, r) =
∑m−1

k=0

∑n
i=1

∑i
j=1 βij

−
f
−k

(xj, r)ψ̄j
−

(x, r)

Ūm.n(x, r) =
∑m−1

k=0

∑n
i=1

∑i
j=1 β̄ij f̄k(xj, r)

¯̄ψj(x, r)

(5.12)

6. Conclusion

In this paper, the combination of homotopy perturbation and fuzzy reproducing kernel

Hilbert space methods was employed successfully for solving nonlinear singular initial value

problems including generalized Lane− Emden−type equations. The numerical results show

that the present method is an accurate and reliable analytical technique for nonlinear singular

initial value problems. Moreover, the method is also effective for solving other nonlinear

initial value problems.
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