FROZEN STEEPEST DESCENT METHOD FOR NONLINEAR ILL-POSED HAMMERSTEIN TYPE OPERATOR EQUATIONS

M. SABARI

Department of Mathematical and Computational Sciences, NIT Karnataka, Mangaluru -575 025, India Email: msabarijothi16@gmail.com

Received May 12, 2017

ABSTRACT. In this study, we consider an inverse free iterative method for approximating a solution of the nonlinear ill-posed Hammerstein type equation KF(x) = y. Our approach is to solve Kz = y and then F(x) = z. We use Tikhonov regularization method for approximating the solutions of Kz = y and Frozen steepest descent method for solution of F(x) = z. The adaptive parameter choice strategy of Pereversev and Schock (2005) is used for choosing the regularization parameter.

Key words and phrases. Nonlinear ill-posed Hammerstein type operator; Tikhonov regularization; Steepest descent method; Balancing principle.

1. INTRODUCTION

In this paper, we considered the problem of approximating the solution \hat{x} of the nonlinear ill-posed Hammerstein type equation

where $F : D(F) \subseteq X \to Z$ is a Fréchet differentiable nonlinear operator, $K : Z \to Y$ is a bounded linear operator and X, Y, Z are Hilbert spaces. Throughout this paper, D(F)stands for the domain of $F, \langle ., . \rangle$ and $\|.\|$ stand for inner product and norm, respectively. Fréchet derivative of F is denoted by $\mathbf{F}'(.)$ and its adjoint by $F'(.)^*$. A typical example of the Hammerstein type equation (1.1) is

$$KF(x)(t) := \int_{0}^{1} k(s,t) x^{3}(s) ds$$

where $K: L^2[0,1] \to L^2[0,1]$ is a bounded linear operator defined by

$$Kz(t) = \int_0^1 k(s,t) z(s) ds,$$

 $\odot 2017$ Mathematical Inverse Problems

with kernel $k(s,t) \in L^2([0,1] \times [0,1])$ and $F : D(F) \subseteq L^2[0,1] \to L^2[0,1]$ is the nonlinear operator defined by

$$Fx(s) = x^3(s).$$

In general (1.1) is ill-posed in the sense that the solution need not depends continuously on the right-hand side data y. In [6], George studied an iterative Newton-Tikhonov regularization (NTR) method for approximating a x_0 -minimum norm solution \hat{x} of (1.1), where \hat{x} is called an x_0 -minimum norm solution, if

$$\|\hat{x} - x_0\| = \min\{\|x - x_0\| : KF(x) = y, x \in D(F)\}.$$

Further in practice, only an approximation of y, say y^{δ} with $||y - y^{\delta}|| \leq \delta$ are available. So one has to consider

(1.2)
$$KF(x) = y^{\delta}$$

instead of (1.1). As in [1, 6, 7, 8, 9, 10, 14], we approach the problem (1.2) by solving the equation

(1.3)
$$Kz = y^{\delta}$$

first and then

$$F(x) = z$$

For approximating \hat{x} , iterative regularization method are studied by Argyros et.al [1], Argyros et.al [4], George [6], George and Nair[7], George and Kuhanandan [8], George and Shobha [10] and Shobha et.al [14]. Note that, in all these methods, one has to compute the inverse involving Fréchet derivative of F at each iterate x_k or at initial guess x_0 .

In the present study, we apply Tikhonov regularization to solve the linear operator equation (1.3) and then we consider the inverse free iterative method to solve the non-linear operator equation (1.4). The method involves, Fréchet derivative of F only at x_0 (see (3.2)).

The rest of the paper is organized as follows: Section 2 contains preliminaries, Section 3 contains convergence analysis of inverse free iterative method, Section 4 contains error bounds and source conditions and Section 5 contains finite dimensional realization of inverse free iterative method. Finally the paper ends with an academic example in Section 6.

2. Preliminaries

Denote by $B_r(x)$, $\overline{B}_r(x)$ the open and closed ball in X, respectively, with center $x \in X$ and of radius r > 0. The following assumption is used for obtaining the error estimate. Assumption 2.1. There exists a continuous, strictly monotonically increasing function φ : $(0, a] \rightarrow (0, \infty)$ with $a \ge ||K||^2$ satisfying;

$$\lim_{\lambda \to 0} \varphi(\lambda) = 0$$

•

$$\sup_{\lambda \ge 0} \frac{\alpha \varphi(\lambda)}{\lambda + \alpha} \le \varphi(\alpha), \qquad \forall \alpha \in (0, a].$$

• there exists $v \in X$ with $||v|| \le 1$ such that

$$F(\hat{x}) - F(x_0) = \varphi(K^*K)v.$$

Let

(2.1)
$$z_{\alpha}^{\delta} = (K^*K + \alpha I)^{-1}K^*(y^{\delta} - KF(x_0)) + F(x_0).$$

It is known that (see (4.3) in [8]) under the Assumption 2.1

(2.2)
$$\|F(\hat{x}) - z_{\alpha}^{\delta}\| \le \varphi(\alpha) + \frac{\delta}{\sqrt{\alpha}}.$$

3. Convergence analysis

Let $\delta_0 > 0$, $a_0 > 0$ be some constants with $\delta_0^2 < a_0$ and $||x_0 - \hat{x}|| \leq r$. Let $\delta \in (0, \delta_0]$ and $\alpha \in [\delta_0^2, a_0]$. Then as in [3], for $\alpha > 0$, one can prove that

(3.1)
$$F'(x_0)^*(F(x) - z_{\alpha}^{\delta}) + \frac{\alpha}{c}(x - x_0) = 0$$

has a unique solution x_{α}^{δ} in $B_r(x_0)$ provided $0 < r < \frac{1}{2k_0}$. To obtain an approximation for x_{α}^{δ} , we consider the iteration defined for $n = 0, 1, 2, \cdots$ by

(3.2)
$$x_{n+1} = x_n - \beta [F'(x_0)^* (F(x_n) - z_\alpha^\delta) + \frac{\alpha}{c} (x_n - x_0)].$$

We need the following assumption for the convergence analysis of (3.2).

Assumption 3.1.

(a) There exists a constant $k_0 > 0$ such that for every $x \in D(F)$ and $v \in X$, there exists an element $\Phi(x, x_0, v) \in X$ satisfying

$$[F'(x) - F'(x_0)]v = F'(x_0)\Phi(x, x_0, v), \quad \|\Phi(x, x_0, v)\| \le k_0 \|v\| \|x - x_0\|.$$

(b)

$$\forall x \in B_r(\hat{x}), \|F'(x)\| \le m.$$

Further, let β , $q_{\alpha,\beta}$ be parameters such that

$$(3.3)\qquad\qquad\qquad\beta\leq\frac{1}{m^2+\frac{a_0}{c}}$$

and

(3.4)
$$q_{\alpha,\beta} = 1 - \frac{\alpha\beta}{c} + \frac{3\beta m^2 k_0}{2}r.$$

The main result of this paper is the following theorem.

THEOREM 3.2. Let Assumption 3.1 holds and let (x_n) be as in (3.2) and $0 < r < \min\{\frac{1}{2k_0}, \frac{2\alpha}{3m^2k_0}\}$. Then for each $\delta \in (0, \delta_0]$ and $c \leq \alpha$. Then the sequence (x_n) is in $B_{2r}(x_0)$ and converges to x_{α}^{δ} as $n \to \infty$. Further,

(3.5)
$$||x_{n+1} - x_{\alpha}^{\delta}|| \le q_{\alpha,\beta}^{n+1} ||x_0 - x_{\alpha}^{\delta}||$$

where $q_{\alpha,\beta}$ is as in (3.4).

Proof: Clearly, $x_0 \in \overline{B_{2r}(x_0)}$. Let $M_n := \int_0^1 F'(x_\alpha^{\delta} + t(x_n - x_\alpha^{\delta})) dt$. Since $x_\alpha^{\delta} \in B_r(x_0)$, M_0 is well defined. Assume that for some n > 0, $x_n \in B_{2r}(x_0)$ and M_n is well defined. Then, since x_α^{δ} satisfies the equation (3.1), we have

$$\begin{aligned} x_{n+1} - x_{\alpha}^{\delta} &= x_n - x_{\alpha}^{\delta} - \beta \left[F'(x_0)^* (F(x_n) - F(x_{\alpha}^{\delta})) + \frac{\alpha}{c} (x_n - x_{\alpha}^{\delta}) \right] \\ &= x_n - x_{\alpha}^{\delta} - \beta \left[F'(x_0)^* M_n + \frac{\alpha}{c} I \right] (x_n - x_{\alpha}^{\delta}) \\ &= x_n - x_{\alpha}^{\delta} - \beta \left[F'(x_0)^* (M_n - F'(x_0)) \right] (x_n - x_{\alpha}^{\delta}) \\ &- \beta \left[F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right] (x_n - x_{\alpha}^{\delta}) \\ &= \left[I - \beta \left(F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right) \right] (x_n - x_{\alpha}^{\delta}) \\ &- \beta \left[F'(x_0)^* (M_n - F'(x_0)) \right] (x_n - x_{\alpha}^{\delta}). \end{aligned}$$

Using Assumptions 3.1, we have

(3.6)

$$x_{n+1} - x_{\alpha}^{\delta} = \left[I - \beta \left(F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right) \right] (x_n - x_{\alpha}^{\delta}) -\beta F'(x_0)^* F'(x_0) \int_0^1 \Phi(x_{\alpha}^{\delta} + t(x_n - x_{\alpha}^{\delta}), x_0, x_n - x_{\alpha}^{\delta}) dt$$

Now since $I - \beta \left(F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right)$ is a positive self-adjoint operator,

$$||I - \beta \left(F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right) ||$$

$$= \sup_{||x||=1} |\langle \left(I - \beta \left(F'(x_0)^* F'(x_0) + \frac{\alpha}{c} I \right) \right) x, x \rangle |$$

$$= |\sup_{||x||=1} \left(1 - \beta \frac{\alpha}{c} \right) \langle x, x \rangle - \beta \langle F'(x_0)^* F'(x_0) x, x \rangle |$$

$$\leq 1 - \frac{\alpha \beta}{c}.$$
(3.7)

The last step follows from the relation

$$\begin{aligned} \beta |\langle F'(x_0)^* F'(x_0) x, x \rangle| &\leq \beta ||F'(x_0)||^2 \\ &\leq \beta m^2 \\ &\leq \frac{1}{m^2 + \frac{a_0}{c}} m^2 \\ &\leq \frac{1}{m^2 + \frac{\alpha}{c}} m^2 = 1 - \frac{\alpha/c}{m^2 + \alpha/c} \leq 1 - \frac{\alpha\beta}{c}. \end{aligned}$$

Hence, by Assumption 3.1, we have

$$\begin{aligned} \|x_{n+1} - x_{\alpha}^{\delta}\| &\leq \left(1 - \frac{\alpha\beta}{c}\right) \|x_n - x_{\alpha}^{\delta}\| \\ &+ \beta m^2 k_0 \int_0^1 ((1-t)) \|x_{\alpha}^{\delta} - x_0\| + t \|x_n - x_0\|) dt \|x_n - x_{\alpha}^{\delta}\| \\ &\leq \left(1 - \frac{\alpha\beta}{c} + \beta \frac{3k_0 m^2 r}{2}\right) \|x_n - x_{\alpha}^{\delta}\| \\ &\leq q_{\alpha,\beta} \|x_n - x_{\alpha}^{\delta}\|. \end{aligned}$$

Since $q_{\alpha,\beta} < 1$, we have

$$||x_{n+1} - x_{\alpha}^{\delta}|| < ||x_0 - x_{\alpha}^{\delta}|| \le r$$

and

(3.8)

$$||x_{n+1} - x_0|| \le ||x_{n+1} - x_{\alpha}^{\delta}|| + ||x_0 - x_{\alpha}^{\delta}|| \le 2r$$

i.e., $x_{n+1} \in B_{2r}(x_0)$. Also, for $0 \le t \le 1$,

$$\|x_{\alpha}^{\delta} + t(x_{n+1} - x_{\alpha}^{\delta}) - x_0\| = \|(1 - t)(x_{\alpha}^{\delta} - x_0) + t(x_{n+1} - x_{\alpha}^{\delta})\| < 2r.$$

Hence, $x_{\alpha}^{\delta} + t(x_{n+1} - x_{\alpha}^{\delta}) \in B_{2r}(x_0)$ and M_{n+1} is well defined. Thus, by induction x_n is well defined and remains in $B_{2r}(x_0)$ for each $n = 0, 1, 2, \cdots$. By letting $n \to \infty$ in (3.2), we obtain the convergence of x_n to x_{α}^{δ} . The estimate (3.5) now follows from (3.8).

4. Error bounds under source conditions

In this section, we need the following assumptions in addition to the earlier assumptions to obtain the error bound.

Assumption 4.1. There exists a continuous, strictly monotonically increasing function φ_1 : $(0,b] \rightarrow (0,\infty)$ with $b \ge ||F'(x_0)||^2$ satisfying;

 $\lim_{\lambda \to 0} \varphi_1(\lambda) = 0$

•

$$\sup_{\lambda \ge 0} \frac{\alpha \varphi_1(\lambda)}{\lambda + \alpha} \le \varphi_1(\alpha), \qquad \forall \alpha \in (0, b].$$

• there exists $v \in X$ with $||v|| \leq 1$ such that

$$x_0 - \hat{x} = \varphi_1(F'(x_0)^* F'(x_0))v.$$

Assumption 4.2. For each $x \in B_r(x_0)$, there exists a bounded linear operator $G(x, x_0)$ such that

$$F'(x) = F'(x_0)G(x, x_0)$$

with $||G(x, x_0)|| \le k_1$

Let $k_1 < \frac{1-k_0r}{1-c}$ and assume that $\varphi_1(\alpha) \leq \varphi(\alpha)$. Proof of the following Theorems 4.3, 4.4 and 4.5 are analogous to the proof of Theorems 3.14, 3.15 and 3.16 in [1].

THEOREM 4.3. (cf. [1], Theorem 3.14) Let x_{α}^{δ} be the solution of (3.1) and Assumption 4.1 and Assumption 4.2 hold. Let $0 < r < \min\left\{\frac{1}{2k_0}, \frac{2\alpha}{3cm^2k_0}\right\}$ and $k_1 < \frac{1-k_0r}{1-c}$. Then

$$\|x_{\alpha}^{\delta} - \hat{x}\| \le \frac{\varphi_1(\alpha) + \|F(\hat{x}) - z_{\alpha}^{\delta}\|}{1 - k_0 r - (1 - c)k_1}$$

THEOREM 4.4. (cf. [1], Theorem 3.15) Let (x_n) be as in (3.2). Assumption 2.1 hold and $\varphi_1(\alpha) \leq \varphi(\alpha)$ and assumptions in Theorem 4.3 and Theorem 3.2 hold. Then

$$||x_n - \hat{x}|| \le q_{\alpha,\beta}^n r + K\left(2\varphi(\alpha) + \frac{\delta}{\sqrt{\alpha}}\right)$$

where $K = \frac{1}{1 - K_0 r - (1 - c)k_1}$.

THEOREM 4.5. (cf. [1], Theorem 3.16) Let (x_n) be as in (3.2) and assumptions in Theorem 4.4 holds. Let

$$n_k = \min\left\{n: q_{\alpha,\beta}^n \le \frac{\delta}{\sqrt{\alpha}}\right\}.$$

Then

$$||x_{n_k} - \hat{x}|| = \bar{K}\left(\varphi(\alpha) + \frac{\delta}{\sqrt{\alpha}}\right).$$

where $\bar{K} = \max\{2K, r+K\}$

5. Finite dimensional realization of method (1.3)

Let $V_1 \subseteq V_2 \subseteq V_3 \subseteq \dots$ be a sequence of finite-dimensional subspaces of X with $\overline{U_{n \in N}V_n} = X$ and P_h is the orthogonal projection of X onto V_n . Let

$$\varepsilon_h := \|K(I - P_h)\|,$$

$$\tau_h := \|F'(x)(I - P_h)\|, \quad \forall x \in D(F).$$

Let $\{b_h : h > 0\}$ is such that $\lim_{h \to 0} \frac{\|(I-P_h)x_0\|}{b_h} = 0$, $\lim_{h \to 0} \frac{\|(I-P_h)F(x_0)\|}{b_h} = 0$ and $\lim_{h \to 0} b_h = 0$. We assume that $\varepsilon_h \to 0$ and $\tau_h \to 0$ as $h \to 0$. The above assumption is satisfied if, $P_h \to I$ point wise and if K and F'(x) are compact operators. Further we assume that $\varepsilon_h < \varepsilon_0, \tau_h \leq \tau_0, b_h \leq b_0$.

In the discretized Tikhonov regularization method for solving equation (2.1), the solution of $z_{\alpha}^{h,\delta}$ of the equation

(5.1)
$$\left(P_h K^* K P_h + \frac{\alpha}{c} P_h\right) \left(z_\alpha^{h,\delta} - P_h F(x_0)\right) = P_h K^* [y^\delta - K F(x_0)]$$

is taken as an approximation for $F(\hat{x})$.

THEOREM 5.1. (See [9], Theorem 2.4) Let $z_{\alpha}^{h,\delta}$ be as in (5.1). Further if $b_h \leq \frac{\delta + \varepsilon_h}{\sqrt{\alpha}}$ and Assumption 2.1 holds. Then

(5.2)
$$\|F(\hat{x}) - z_{\alpha,h}^{\delta}\| \le C\left(\varphi(\alpha) + \frac{\delta + \varepsilon_h}{\sqrt{\alpha}}\right).$$

where $C = \max\{mr, 1\} + 1$

5.1. A priori choice of the parameter. Note that the estimate $\varphi(\frac{\alpha}{c}) + \frac{\delta + \varepsilon_h}{\sqrt{\alpha}}$ in (5.2) is of optimal order for the choice $\alpha := \alpha(\delta, h)$ which satisfies $\varphi(\alpha(\delta, h)) = \frac{\delta + \varepsilon_h}{\sqrt{\alpha(\delta,h)}}$. Let $\psi(\lambda) := \lambda \sqrt{\varphi^{-1}(\lambda)}, 0 < \lambda \leq a$. Then we have $\delta + \varepsilon_h = \sqrt{\alpha(\delta,h)}\varphi(\alpha(\delta,h)) = \psi(\varphi(\alpha(\delta,h)))$ and

$$\alpha(\delta, h) = \varphi^{-1}(\psi^{-1}(\delta + \varepsilon_h)).$$

So from (5.2) we have $\|F(\hat{x}) - z_{\alpha}^{h,\delta}\| \le 2C\psi^{-1}(\delta + \varepsilon_h).$

5.2. An adaptive choice of the parameter. Let

$$D_N = \{ \alpha_i = \mu^i \alpha_0 : i = 1, 2, \dots, N, \mu > 1, \alpha_0 > 0 \}$$

be the set of possible values of the parameter α .

Let

(5.3)
$$l := \max\left\{i : \varphi(\alpha_i) \le \frac{\delta + \varepsilon_h}{\sqrt{\alpha_i}}\right\} < N,$$

(5.4)
$$k = \max\left\{i : \alpha_i \in D_N^+\right\}$$

where $D_N^+ = \left\{ \alpha_i \in D_N : \| z_{\alpha_i}^{\delta} - z_{\alpha_j}^{\delta} \| \le \frac{4C(\delta + \varepsilon_h)}{\sqrt{\alpha_j}}, j = 0, 1, 2, ..., i - 1 \right\}.$

THEOREM 5.2. (cf. [9], Theorem 2.5) Let l be as in (5.3), k be as in (5.4) and $z_{\alpha_k}^{h,\delta}$ be as in (5.1) with $\alpha = \alpha_k$. Then $l \leq k$ and

$$\|F(\hat{x}) - z_{\alpha_k}^{h,\delta}\| \le C\left(2 + \frac{4\mu}{\mu - 1}\right)\mu\psi^{-1}(\delta + \varepsilon_h).$$

Proof: Analogous to the proof of Theorem 2.5 in [9].

The discretized version of (3.2) as

(5.5) $x_{n+1,\alpha_k}^{h,\delta} = x_{n,\alpha_k}^{h,\delta} - \beta P_h \left[F'(x_0)^* (F(x_{n,\alpha_k}^{h,\delta}) - z_\alpha^{h,\delta}) + \frac{\alpha_k}{c} (x_{n,\alpha_k}^{h,\delta} - x_0^{h,\delta}) \right]$

where $x_0^{h,\delta} =: P_h x_0$ and $c \leq \alpha_k$. Let

$$(\delta_0 + \varepsilon_0)^2 < \bar{a_0}$$

It is known that for [9, Theorem 3.7.] under the Assumption 2.1

(5.6)
$$P_h F'(x_0)^* (FP_h(x) - z_\alpha^{h,\delta}) + \frac{\alpha_k}{c} P_h(x - x_0) = 0$$

has a unique solution $x_{\alpha_k}^{h,\delta}$ in $B_r(x_0) \cap R(P_h)$ and the following Theorems hold.

THEOREM 5.3. (cf. [9], Theorem 3.8) Suppose $x_{\alpha_k}^{h,\delta}$ is the solution of 5.6 and Assumption 2.1 and Theorem hold. In addition if $\tau_0 < 1$, then

$$\|x_{\alpha_k}^{h,\delta} - x_{\alpha_k}^{\delta}\| \le \frac{1}{1 - \tau_0} \left(\frac{\delta + \varepsilon_h}{\sqrt{\alpha_k}}\right).$$

Proof: Proof is analogous to the proof of Theorem 3.8 in [9].

The proof of the following Theorem 5.4 is analogous to the proof of Theorem 3.2 in Section 3.

THEOREM 5.4. Let $x_{n,\alpha_k}^{h,\delta}$ be as in (5.5) and let $0 < r < \min\left\{\frac{2\alpha}{3M^2ck_0}, \frac{1}{2k_0}\right\}$. Then for each $\delta \in (0, \delta_0]$, $\alpha_k \in ((\delta + \varepsilon_h)^2, \bar{a_0}], \varepsilon_h \leq \varepsilon_0$ the sequence $\{x_{n,\alpha_k}^{h,\delta}\}$ is in $B_{2r}(x_0) \cap R(P_h)$ and converges to $x_{\alpha_k}^{h,\delta}$ as $n \to \infty$. Further,

(5.7)
$$\|x_{n+1,\alpha_k}^{h,\delta} - x_{\alpha_k}^{h,\delta}\| \le q_{\alpha_k,\beta}^{n+1} \|P_h x_0 - x_{\alpha_k}^{h,\delta}\|,$$

where $q_{\alpha_k,\beta}$ is as in (3.4) with $\alpha = \alpha_k$.

THEOREM 5.5. Let $x_{\alpha_k}^{h,\delta}$ be the solution of (5.6) and Assumption in Theorem 4.3,5.3 and 5.4 hold. If $\varphi_1(\alpha) \leq \varphi(\alpha)$, then

$$\|x_{n,\alpha_k}^{h,\delta} - \hat{x}\| \le q_{\alpha_k,\beta}^n r + \left(\left(K + \frac{1}{1 - \tau_0}\right) + KC\left(2 + \frac{4\mu}{\mu - 1}\right)\right)\mu\psi^{-1}(\delta + \varepsilon_h).$$

where $q_{\alpha_k,\beta}$ is as in (3.4) with $\alpha = \alpha_k$.

By combing the results in Theorem 5.4 and Theorem 5.5, we obtain the following Theorem.

THEOREM 5.6. Let $x_{n,\alpha_k}^{h,\delta}$ be as in (5.5) and assumptions in Theorem 5.5 holds. Let

$$n_k = \min\left\{n: q_{\alpha_k,\beta}^n \le \frac{\delta + \varepsilon_h}{\sqrt{\alpha_k}}\right\}.$$

Then

$$\|x_{n_k,\alpha_k}^{h,\delta} - \hat{x}\| = O(\psi^{-1}(\delta + \varepsilon_h)).$$

5.3. Algorithm. The balancing algorithm associated with the choice of the parameter specified in this Section involves the following steps:

- For $i, j \in \{0, 1, 2, \dots, N\}$ $z_{\alpha_i}^{\delta} - z_{\alpha_j}^{\delta} = (\alpha_j - \alpha_i)(K^*K + \alpha_i I)^{-1}[K^*(y^{\delta} - KF(x_0))];$
- Choose $\alpha_0 = (\delta + \varepsilon_h)^2$ and $\mu > 1$;
- Choose $\alpha_i := \mu^{2i} \alpha_0, i = 0, 1, 2, \cdots, N;$
- Solve for $w_i : (K^*K + \alpha_i I)w_i = K * (y^{\delta} KF(x_0);$
- Solve for $j < i, z_{ij} : (K^*K + \alpha_i I)z_{ij} = (\alpha_j \alpha_i)w_i;$
- $||z_{ij}|| > 4C \frac{(\delta + \varepsilon_h)}{\sqrt{\alpha_i}}$, then take k=i-1;
- Otherwise repeat with i+1 in place of i;
- Choose $n_k := \min\left\{n : q_{\alpha_k,\beta}^n \le \frac{\delta + \varepsilon_h}{\sqrt{\alpha_k}}\right\};$
- Solve $x_k := x_{n_k,\alpha_k}^{h,\delta}$ by using the iteration (5.5).

6. Numerical Example

We consider the space $X = Y = L^2(0,1)$ and the operator $KF : X \to Y$, where $F : D(F) \subseteq X \to Y$ is a nonlinear operator defined by

$$F(u) = \int_0^1 k(t,s)u^3(s)ds$$

and $K:X\to Y$ is a bounded linear operator defined by

$$K(x)(t) = \int_0^1 k(t,s)x(s)ds.$$

Here

$$k(t,s) = \begin{cases} (1-t)s, & 0 \le s \le t \le 1\\ (1-s)t & 0 \le s \le t \le 1 \end{cases}$$

The Fréchet derivative of F is given by

$$F'(u)w = 3\int_0^1 k(t,s)u^2(s)w(s).0ds$$

We have taken exact solution $\hat{x}(t) = 0.5 + t^3$ and initial guess $x_0(t) = 0.5 + t^3 - \frac{3}{56}(t - t^8)$. Let $\beta = 1/1000$. Then the error estimates are given in Table 1 and approximate and exact solutions for various values of δ are given in figures (a) to (f).

N	k	$lpha_k$	$\ x_{n_k,\alpha_k}^{h,\delta} - \hat{x}\ $	$\frac{\ x_{n_k,\alpha_k}^{h,\delta} - \hat{x}\ }{\sqrt{\delta + \varepsilon_h}}$
32	4	1.06E-01	2.36E-02	7.47E-02
62	4	1.06E-01	1.67E-02	5.28E-02
124	4	1.06E-01	1.18E-02	3.74E-02
256	4	1.06E-01	8.35E-03	2.64E-02
512	4	1.06E-01	5.91E-03	1.87E-02
1024	4	1.06E-01	4.18E-03	1.32E-02

 TABLE 1. Error estimate

References

- I. K. Argyros, S. George and S. M. Erappa, Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations, Rend. Circ. Mat. Palermo, DOI 10.1007/s12215-016-0254-x.
- [2] I. K. Argyros, "Convergence and Applications of Newton-type Iterations", Springer, New York, (2008).
- [3] I. K. Argyros, S. George and P. Jidesh, Inverse free iterative methods for nonlinear ill-Posed operator equations, Int. J. Math. Math. Sci. 2014 (2014), Article ID 754154, 8 pages.
- [4] I. K. Argyros, S. George, M. E. Shobha, Discretized Newton-Tikhonov Method for Ill-posed Hammerstein Type Equations, Commun. Appl. Nonlinear Anal. 23(2016), 34-55.
- [5] H. W. Engl and M. Hanke and A. Neubauer, Regularization of Inverse Problems; Mathematics and its Applications, Kluwer Academic Publishers, 2000, Dordrecht.

- S. George, Newton-Tikhonov regularization of ill-posed Hammerstein operator equation, J. Inv. Ill-posed Probl. 2(2006), 135-146.
- [7] S. George and M. T. Nair, A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations, J. Complex. 24(2008), 228–240.
- [8] S. George and M. Kunhanandan, An iterative regularization method for Ill-posed Hammerstein type operator equation, J. Inv.Ill-Posed Probl. 17(2009), 831-844.
- [9] S. George and M. E. Shobha, Two-step Newton-Tikhonov method for Hammerstein-Type equations:Finite-Dimensional Realization, ISRN Appl. Math. (2012) 2012, Article ID 783579.
- [10] S. George, M. E. Shobha, Newton type iteration for Tikhonov regularization of non-linear ill-posed Hammerstein type equations, J. Appl. Math. Comput. 44 (2014), 69-82.
- [11] S. George, M. Sabari, Numerical approximation of a Tikhonov type regularizer by a discretized frozen steepest descent method, J. Comput. Appl. Math.(Revised).
- [12] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik and P. E. Sobolevskii, Integral operators in space of summable functions, Translated by T.Ando, Noordhoff International publishing, Leyden, 1976.
- [13] S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM. J. Numer. Anal., 43(2005), 2060–2076.
- [14] M. E. Shobha, I. K. Argyros, S. George, Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations, Appl. Math. 1(2014), 107-129.