
Mathematical Inverse Problems, Vol. 4, No. 1 (2017), 12-24 ISSN 2381-9634

GRADIENT OF EIGENVALUES OF DIRAC OPERATORS AND ITS
APPLICATIONS

TIGRAN HARUTYUNYAN AND YURI ASHRAFYAN∗

Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
∗Corresponding author: yuriashrafyan@ysu.am

Received Mar 26, 2017

Abstract. For Dirac operators, which have discrete spectra, the concept of eigenvalues’

gradient is given and formulae for this gradients are obtained in terms of normalized eigen-

functions. It’s shown how the gradient is being used to describe isospectral operators or

when finite number of spectral data is changed.
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1. Introduction. Gradient of eigenvalues.

Let E is two dimensional identical matrix, and σ1 =

(
0 i

−i 0

)
, σ2 =

(
1 0

0 −1

)
,

σ3 =

(
0 1

1 0

)
are well-known Pauli matrices, which have properties σ2

k = E, σ∗k = σk

(self-adjointness) and σkσj = −σjσk (anti-commutativity), when k 6= j, for k, j = 1, 2, 3.

Let p and q are real-valued, summable on [0, π] functions, i.e. p, q ∈ L1
R[0, π]. By

L(p, q, α, β) = L(Ω, α, β) we denote the boundary-value problem for canonical Dirac sys-

tem (see [1, 2, 3, 4]):

`y ≡
{
B
d

dx
+ Ω(x)

}
y = λy, x ∈ (0, π), y =

(
y1

y2

)
, λ ∈ C,(1.1)

y1(0) cosα + y2(0) sinα = 0, α ∈
(
−
π

2
,
π

2

]
,(1.2)

y1(π) cos β + y2(π) sin β = 0, β ∈
(
−
π

2
,
π

2

]
,(1.3)

where B =
1

i
σ1 =

(
0 1

−1 0

)
, Ω(x) = σ2p(x) + σ3q(x) =

(
p(x) q(x)

q(x) −p(x)

)
.
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By the same L(p, q, α, β) we also denote a self-adjoint operator, generated by differential

expression ` in Hilbert space of two component vector-functions L2([0, π];C2) on the domain

(1.4)
D =

{
y =

(
y1

y2

)
; yk ∈ AC[0, π], (`y)k ∈ L2[0, π], k = 1, 2;

y1(0) cosα + y2(0) sinα = 0, y1(π) cos β + y2(π) sin β = 0
}

where AC[0, π] is the set of absolutely continuous functions on [0, π] (see, e.g. [2, 5]).

The scalar product in L2([a, b];C2) we denote by (f, g) =
∫ b
a
〈f, g〉dx =

∫ b
a
[f1(x)ḡ1(x) +

f2(x)ḡ2(x)]dx. It is well known (see [4, 6, 7]) that under these conditions the spectra of the

operator L(p, q, α) is purely discrete and consists of simple, real eigenvalues, which we denote

by λn = λn(p, q, α, β) = λn(Ω, α, β), n ∈ Z, to emphasize the dependence of λn on quantities

p, q and α, β. It is also well known (see, e.g. [4, 6, 7]) that the eigenvalues form a sequence,

unbounded below as well as above. So we will enumerate it as λk < λk+1, k ∈ Z, λk > 0,

when k > 0 and λk < 0, when k < 0, and the nearest to zero eigenvalue we will denote by

λ0. If there are two nearest to zero eigenvalue, then by λ0 we will denote the negative one.

With this enumeration it is proved (see [4, 6, 7]), that the eigenvalues have the asymptotics:

(1.5) λn(Ω, α, β) = n−
β − α
π

+ rn, rn = o(1), n→ ±∞.

Let y(x, λ) = ϕ(x, λ, α,Ω) and y(x, λ) = ψ(x, λ, β,Ω) are the solutions of the Cauchy

problems

(1.6)

{ `y = λy

y(0, λ) =

(
sinα

− cosα

)
,

(1.7)

{ `y = λy

y(π, λ) =

(
sin β

− cos β

)
,

respectively. Since the differential expression ` is self-adjoint, the components ϕ1(x, λ),

ϕ2(x, λ) and ψ1(x, λ), ψ2(x, λ) of the vector-functions ϕ(x, λ) and ψ(x, λ) can be chosen

real-valued for real λ. It is easy to see, that ϕn(x,Ω) = ϕ(x, λn, α,Ω) and ψn(x,Ω) =

ψ(x, λn, β,Ω) are the eigenfunctions, corresponding to the eigenvalue λn. By an = an(Ω, α, β)

and bn = bn(Ω, α, β) we denote the squares of the L2-norm of the eigenfunctions ϕn(x,Ω)

and ψn(x,Ω):
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an = ‖ϕn‖2 =

∫ π

0

|ϕn(x,Ω)|2dx, n ∈ Z,

bn = ‖ψn‖2 =

∫ π

0

|ψn(x,Ω)|2dx, n ∈ Z.

The numbers an and bn are called norming constants. By hn(x,Ω) we will denote normalized

eigenfunctions (i.e. ‖hn(x)‖ = 1) of operator L(Ω, α, β):

hn(x) = hn(x,Ω) =
ϕn(x,Ω)√
an(Ω, α)

,

and it can be taken also as

ĥn(x) = ĥn(x,Ω) =
ψn(x,Ω)√
bn(Ω, β)

.

It is easy to see, that |hn(0)|2 =
1

an
and |ĥn(π)|2 =

1

bn
. Having a goal to describe the

dependence of λn on quantities p, q and α, β more precisely, we input a concept of eigenvalues’

gradient, by the following formula (compare with [8])

(1.8) gradλn =

(
∂λn

∂α
,
∂λn

∂β
,
∂λn

∂p(x)
,
∂λn

∂q(x)

)
.

Definition 1. Let g is defined on (a, b), where −∞ ≤ a < b ≤ ∞. The derivative of function

f with respect to function g is called a function
∂f

∂g(x)
, which satisfies the equation

d

dε
f(g + εv)

∣∣∣
ε=0

=

∫ b

a

∂f

∂g(x)
v(x)dx,

for all v ∈ L2
R (a, b).

We want to express the components of the eigenvalues’ gradient by normalized eigenfunc-

tions of L(p, q, α, β) problem.
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Theorem 1.1. Let λn and hn are eigenvalues and normalized eigenfunctions of the L(p, q, α, β)

problem correspondingly. Then there hold the relations:

∂λn(α, β, p, q)

∂α
= −|hn(0)|2,

∂λn(α, β, p, q)

∂β
= |hn(π)|2,

∂λn(α, β, p, q)

∂p(x)
= |hn1(x)|2 − |hn2(x)|2,

∂λn(α, β, p, q)

∂q(x)
= 2hn1(x) · hn2(x).

Proof. Let hn is eigenfunction of problem L(p, q, α, β), and h̃n is eigenfunction of problem

L(p, q, α + ∆α, β). Then

(1.9) `hn ≡ Bh′n(x) + Ω(x)hn(x) ≡ λn(α)hn(x),

hn1(0) cosα + hn2(0) sinα = 0,

hn1(π) cos β + hn2(π) sin β = 0.

(1.10) `h̃n ≡ Bh̃′n(x) + Ω(x)hn(x) ≡ λn(α + ∆α)h̃n(x),

h̃n1(0) cos(α + ∆α) + h̃n2(0) sin(α + ∆α) = 0,

h̃n1(π) cos β + h̃n2(π) sin β = 0.

Multiply (1.9) by h̃n(x) scalarly from the right, and (1.10) by hn(x) from the left. Taking

into account the self-adjointness of Ω(x)
(

(hn,Ωh̃n) = (Ωhn, h̃n)
)

, we obtain

(
Bh′n, h̃n

)
+
(

Ωhn, h̃n

)
= λn(α)

(
hn, h̃n

)
,(

hn, Bh̃
′
n

)
+
(

Ωhn, h̃n

)
= λn(α + ∆α)

(
hn, h̃n

)
.

Subtracting from the second equation the first equation, we will get∫ π

0

〈( hn1

hn2

)
,

(
h̃′n2

−h̃′n1

)〉
dx−

∫ π

0

〈( h′n2

−h′n1

)
,

(
h̃n1

h̃n2

)〉
dx =

(1.11) = [λn(α + ∆α)− λn(α)]
(
hn, h̃n

)
.
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Taking into account, that in case of real potentials the components of the solutions can be

taken real, thus the left side of the latter equation can be written as∫ π

0

[
hn1(x)h̃′n2

(x)− hn2(x)h̃′n1
(x)− h′n2

(x)h̃n1(x) + h′n1
(x)h̃n2(x)

]
dx =

=

∫ π

0

d

dx

[
hn1(x)h̃n2(x)− hn2(x)h̃n1(x)

]
dx =

= hn1(π)h̃n2(π)− hn2(π)h̃n1(π)− hn1(0)h̃n2(0) + hn2(0)h̃n1(0).

Since hn(x) =
ϕn(x, α)√
an(α)

and h̃n(x) =
ϕn(x, α + ∆α)√
an(α + ∆α)

, then hn(0) =
1√
an(α)

(
sinα

− cosα

)

and h̃n(0) =
1√

an(α + ∆α)

(
sin(α + ∆α)

− cos(α + ∆α)

)
. Thus the equation (1.11) can be rewritten

as follows

−
1√

an(α)an(α + ∆α)
sin ∆α = [λn(α + ∆α)− λn(α)]

(
hn, h̃n

)
.

From the latter, when ∆α→ 0, we obtain

(1.12)
∂λn

∂α
= −

1

an
= −|hn(0)|2.

Similarly we obtain

(1.13)
∂λn

∂β
=

1

bn
= |hn(π)|2.

To obtain the equality
∂λn

∂p(x)
= |hn1(x)|2 − |hn2(x)|2, we write (1.9) in the form

(1.14) Bh′n(x) + (σ2p(x) + σ3q(x))hn(x) ≡ λn(p)hn(x)

and for (1.10) in the form

(1.15) Bh̃′n(x) + (σ2 [p(x) + εv(x)] + σ3q(x)) h̃n(x) ≡ λn(p+ εv)h̃n(x),

where h̃n is normalized eigenfunction of the L(p + εv, q, α, β) problem. Multiply (1.14) by

h̃n(x) scalarly from the right, and (1.15) by hn(x) from the left. Taking into account, that

hn and h̃n satisfy to the same boundary conditions, subtract equality (1.14) from (1.15), we

obtain (
hn, σ2 [p(x) + εv(x)] h̃n

)
−
(
σ2p(x)hn, h̃n

)
= [λn(p+ εv)− λn(p)]

(
hn, h̃n

)
.

Form the latter it follows

λn(p+ εv)− λn(p)

ε

(
hn, h̃n

)
=

∫ π

0

(
hn1(x)h̃n1(x)− hn2(x)h̃n2(x)

)
v(x)dx.
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Tending ε → 0, using the fact, that h̃n → hn, when ε → 0 and the definition 1, we obtain

∂λn

∂p(x)
= |hn1(x)|2 − |hn2(x)|2.

Similarly we can obtain the equality
∂λn

∂q(x)
= 2hn1(x) · hn2(x).

Theorem 1.1 is proved. �

Let us consider also canonical Dirac system on half axis. Let p and q are real-valued, local

summable on (0,∞) functions, i.e. p, q ∈ L1
R,loc(0,∞). For α ∈

(
−
π

2
,
π

2

]
, by L(p, q, α) we

denote the self-adjoint operator, generated by differential expression ` (see (1.1)) in Hilbert

space of two component vector-functions L2((0,∞);C2) on the domain

Dα =
{
y =

(
y1

y2

)
; yk ∈ L2(0,∞) ∩ AC(0,∞);

(`y)k ∈ L2(0,∞), k = 1, 2; y1(0) cosα + y2(0) sinα = 0
}

where AC(0,∞) is the set of functions, which are absolutely continuous on each finite seg-

ment [a, b] ⊂ (0,∞), 0 < a < b < ∞. We assume, that the spectra of this operator is pure

discrete (see, e.g. [9, 10]), and consists of simple eigenvalues, which we denote by λn(p, q, α),

n ∈ Z.

Let y = ϕ(x, λ, α,Ω) is the same as in the case of finite interval, i.e. ϕ is the solution of

Cauchy problem (1.6). Then ϕn(x) = ϕ(x, λn) are the eigenfunctions, an =
∫∞
0
|ϕn(x,Ω)|2dx,

n ∈ Z, are the norming constants, and hn(x) = hn(x,Ω, λn) =
ϕn(x)
√
an

are the normalized

eigenfunctions. In this case the gradient is defined as

gradλn =

(
∂λn

∂α
,
∂λn

∂p(x)
,
∂λn

∂q(x)

)
,

and in Definition 1 we take a = 0, b =∞.

Theorem 1.2. Let λn and hn are eigenvalues and normalized eigenfunctions of the L(p, q, α)

problem correspondingly. Then there hold the relations:

∂λn(α, p, q)

∂α
= −|hn(0)|2,

∂λn(α, p, q)

∂p(x)
= |hn1(x)|2 − |hn2(x)|2,

∂λn(α, p, q)

∂q(x)
= 2hn1(x) · hn2(x).
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Proof. In case of real potentials the components of the solutions can be taken real. Since the

eigenfunctions hn and h̃n are from L2(0,∞), we can infer that the scalar products 〈hn, h̃n〉
are from L1(0,∞) and, hence, are tending to 0 on some {xk; xk →∞, k →∞, } sequence.

Taking the latter first two formulae can be proved in the similar way as in theorem 1.1. Thus

here we will prove the third formula.

Write the equation (1.9) in the following form

(1.16) Bh′n(x) + (σ2p(x) + σ3q(x))hn(x) ≡ λn(p)hn(x)

and (1.10) in the form

(1.17) Bh̃′n(x) + (σ2p(x) + σ3 [q(x) + εv(x)]) h̃n(x) ≡ λn(p+ εv)h̃n(x),

where h̃n is normalized eigenfunction of the L(p, q + εv, α, β) problem. Multiplying (1.16)

scalarly by h̃n(x) from the right, and (1.17) by hn(x) from the left. Taking into account, that

hn and h̃n satisfy to the same boundary conditions, subtract equality (1.16) from (1.17), we

obtain (
hn, σ3 [q(x) + εv(x)] h̃n

)
−
(
σ3q(x)hn, h̃n

)
= [λn(q + εv)− λn(q)]

(
hn, h̃n

)
.

From the latter equation we have

(1.18)

∫ ∞
0

(
hn1(x)¯̃hn2(x) + hn2(x)¯̃hn1(x)

)
εv(x)dx =

= [λn(q + εv)− λn(q)]
(
hn, h̃n

)
.

And from the equation (1.18) it follows

λn(q + εv)− λn(q)

ε

(
hn, h̃n

)
=

∫ ∞
0

(
hn1

¯̃hn2 + hn2

¯̃hn1

)
v(x)dx.

Tending ε → 0, using the fact, that h̃n → hn, when ε → 0 and the definition 1, we obtain

∂λn

∂q(x)
= 2hn1(x)hn2(x).

Theorem 1.2 is proved. �

It is well-known, that the inverse problem of reconstruction of operator L(p, q, α, β) by

spectral function (in our case by eigenvalues {λn}n∈Z and norming constants {an}n∈Z) can

not be solved uniquely, if we permit parameters α and β to be arbitrary (see [1]). But if

we fix one of them, then the inverse problem can be solved uniquely (see [1, 7, 11, 12]).

Therefore, usually is considered the problem L(p, q, α, 0) (see [4, 7, 11, 13]).

It is also well-known, that for regular Dirac operators (the operators on finite interval with

summable coefficients), we can not add or diminish the eigenvalues (because of obligatory
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asymptotics (1.5)), staying in the class of summable coefficients, but we can change the

norming constants and describe the isospectral Dirac operators (see [11, 13]).

The applications of eigenvalues’ gradient of describing operators, which isospectral with

fixed operator L(p, q, α, 0) is given in section 2. On the other hand, if we consider Dirac

operator on half axis (0,∞) (which has pure discrete spectra), we can add or diminish

arbitrary finite number of eigenvalues or change norming constants, since in this case there

are not obligatory asymptotics (see, e.g. [10]). The applications of eigenvalues’ gradient in

this case is given in section 3.

2. Isospectrality on finite interval.

Let us consider the boundary-value problem L(p, q, α, 0) on [0, π]. From the eigenvalues’

asymptotics (1.5) it follows:

(2.1) λn(Ω, α, 0) = n−
α

π
+ rn, rn = o(1), n→ ±∞.

It is known (see [4, 6]) that in the case of Ω ∈ L2
R[0, π] the norming constants have an

asymptotic form:

(2.2) an(Ω) = π + cn,
∞∑

n=−∞

c2n <∞.

Definition 2. Two Dirac operators L(Ω, α, 0) and L(Ω̃, α̃, 0) are said to be isospectral, if

λn(Ω, α, 0) = λn(Ω̃, α̃, 0), for every n ∈ Z.

Lemma 2.1. Let Ω, Ω̃ ∈ L1
R[0, π] and the operators L(Ω, α, 0) and L(Ω̃, α̃, 0) are isospectral.

Then α̃ = α.

Proof. The proof follows from the asymptotics (2.1):

α

π
= lim

n→∞
(n− λn(Ω, α, 0)) = lim

n→∞
(n− λn(Ω̃, α̃, 0)) =

α̃

π
.

�

So, instead of isospectral operators L(Ω, α, 0) and L(Ω̃, α̃, 0), we can talk about ”isospectral

potentials” Ω and Ω̃.

Let us fix some Ω ∈ L2
R[0, π] and consider the set of all canonical potentials Ω̃ =

(
p̃ q̃

q̃ −p̃

)
,

with the same spectra as Ω:
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M2(Ω) = {Ω̃ ∈ L2
R[0, π] : λn(Ω̃, α̃, 0) = λn(Ω, α, 0), n ∈ Z}.

Our main goal is to give the description of the set M2(Ω) in terms of eigenvalues’ gradients.

Note, that the problem of description of isospectral Sturm-Liouville operators was solved in

[8, 14, 15, 16].

For Dirac operators the description of M2(Ω) is given in [11]. This description has a

”recurrent” form, i.e. at the first in [11] is given the description of a family of isospectral

potentials Ω(x, t), t ∈ R, for which only one norming constant am(Ω(·, t)) different from

am(Ω) (namely, am(Ω(·, t)) = am(Ω)e−t), while the others are equal, i.e. am(Ω(·, t)) = am(Ω),

when n 6= m.

Theorem 2.1. [11]. Let t ∈ R, α ∈
(
− π

2
, π
2

]
. Then 1

Ω(x, t) = Ω(x) +
et − 1

θm(x, t,Ω)
{Bhm(x,Ω)h∗m(x,Ω)− hm(x,Ω)h∗m(x,Ω)B},

where θm(x, t,Ω) = 1 + (et − 1)
∫ x
0
|hm(s,Ω)|2ds. So, for arbitrary t ∈ R, λn(Ω, t) = λn(Ω)

for all n ∈ Z, an(Ω, t) = an(Ω) for all n ∈ Z\{m} and am(Ω, t) = am(Ω)e−t.

Theorem 2.1 shows that it is possible to change exactly one norming constant, keeping

the others.

Changing successively each am(Ω) by am(Ω)e−tm , we can obtain any isospectral potential,

corresponding to the sequence {tm;m ∈ Z} ∈ l2.
In [11] were used the following designations:

T−1 = {. . . , 0, . . .},
T0 = {. . . , 0, . . . , 0, t0, 0, . . . , 0, . . .},
T1 = {. . . , 0, . . . , 0, 0, t0, t1, 0, . . . , 0, . . .},
T2 = {. . . , 0, . . . , 0, t−1, t0, t1, 0, . . . , 0, . . .},
. . . ,

T2n = {. . . , 0, 0, t−n, . . . , t−1, t0, t1, . . . , tn−1, tn, 0, . . .},
T2n+1 = {. . . , 0, t−n, t−n+1, . . . , t−1, t0, t1, . . . , tn, tn+1, 0, . . .},
. . . .

Let Ω(x, T−1) ≡ Ω(x) and

Ω(x, Tm) = Ω(x, Tm−1) +4Ω(x, Tm), m = 0, 1, 2, . . . ,

where

1Here * is a sign of transponation, e.g. h∗
m =

(
hm1

hm2

)∗

= (hm1
, hm2

)
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4Ω(x, Tm) =
etm̃ − 1

θm(x, tm̃,Ω(·, Tm−1))
[Bhm̃(x,Ω(·, Tm−1))h∗m̃(·)− hm̃(·)h∗m̃(·)B],

where m̃ =
m+ 1

2
, if m is odd and m̃ = −

m

2
, if m is even. The arguments in others hm̃(·)

and h∗m̃(·) are the same as in the first. And after that in [11] was proved:

Theorem 2.2. [11]. Let T = {tn, n ∈ Z} ∈ l2 and Ω ∈ L2
R[0, π]. Then

Ω(x, T ) ≡ Ω(x) +
∞∑
m=0

4Ω(x, Tm) ∈M2(Ω).

We see, that each potential matrix 4Ω(x, Tm) defined by normalized eigenfunctions

hm̃(x,Ω(x, Tm−1)) of the previous operator L(Ω(·, Tm−1), α, 0). This approach we call ”re-

current” description.

If we denote

∂λn

∂Ω(x)
:=


∂λn

∂p(x)

∂λn

∂q(x)

∂λn

∂q(x)
−
∂λn

∂p(x)

 =

 h2n1
(x)− h2n2

(x) 2hn1(x)hn2(x)

2hn1(x)hn2(x) −(h2n1
(x)− h2n2

(x))

 ,

we will have

(2.3) B
∂λn

∂Ω(x)
=

(
2hn1(x)hn2(x) h2n2

(x)− h2n1
(x)

h2n2
(x)− h2n1

(x) −2hn1(x)hn2(x)

)
.

And it is easy to see, that the term [Bhm̃(x,Ω(·, Tm−1))h∗m̃(·)− hm̃(·)h∗m̃(·)B] of 4Ω(x, Tm)

is equal to B
∂λn

∂Ω(x, Tm)
. Therefore the Theorems 2.1 and 2.2 can be rewritten as

Theorem 2.3. Let t ∈ R, α ∈
(
− π

2
, π
2

]
. Then

Ω(x, t) = Ω(x) +
(et − 1)

θm(x, t,Ω)
B

∂λm

∂Ω(·, Tm))
,

where θm(x, t,Ω) = 1 + (et − 1)
∫ x
0
|hm(s,Ω)|2ds. So, for arbitrary t ∈ R, λn(Ω, t) = λn(Ω)

for all n ∈ Z, an(Ω, t) = an(Ω) for all n ∈ Z\{m} and am(Ω, t) = am(Ω)e−t.

Theorem 2.4. Let T = {tn, n ∈ Z} ∈ l2 and Ω ∈ L2
R[0, π]. Then

Ω(x, T ) ≡ Ω(x) +
∞∑
m=0

etm̃ − 1

θm(x, tm̃,Ω(x, Tm−1))
B

∂λm̃

∂Ω(x, Tm−1))
.
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3. Changing spectral data on half axis.

Let us consider canonical Dirac operator L(p, q, α) on [0,∞), which has a pure discrete

spectra. In work [17], Harutyunyan proved, that in this case one can add or subtract a finite

number of eigenvalues, or scale the values of norming constants (i.e. an to change by etan, for

arbitrary t ∈ R). In that work explicit formulae for potential functions of changed operator

are given.

According to the paper [17], when we want to add a new eigenvalue µ, the formula for

potential function Ω1(x) will be:

(3.1)

Ω1(x) ≡ Ω(x) +
1

1 +
∫ x
0
|h(t, µ)|2dt

{Bh(x, µ)h∗(x, µ)−

−h(x, µ)h∗(x, µ)B}.

When we want to subtract an eigenvalue, e.g. λ0, the formula for potential function Ω2(x)

will be:

(3.2)

Ω2(x) ≡ Ω(x)−
1

1−
∫ x
0
|h(t, λ0)|2dt

{Bh(x, λ0)h
∗(x, λ0)−

−h(x, λ0)h
∗(x, λ0)B}.

When we want to scale the value of a norming constant, e.g. a0, which corresponds to

eigenvalue λ0, the formula for potential function Ω3(x) will be:

(3.3)

Ω3(x) ≡ Ω(x) +
e−t − 1

1 + (e−t − 1)
∫ x
0
|h(t, λ0)|2dt

{Bh(x, λ0)h
∗(x, λ0)−

−h(x, λ0)h
∗(x, λ0)B}.

Using formula (2.3) we can rewrite the formulae (3.1)–(3.3) in terms of eigenvalues’ gra-

dient:

(3.4) Ω1(x) ≡ Ω(x) +
1

1 +
∫ x
0
|h(t, µ)|2dt

·
∂µ

∂Ω(x)
,

(3.5) Ω2(x) ≡ Ω(x)−
1

1−
∫ x
0
|h(t, λ0)|2dt

·
∂λ0

∂Ω(x)
,
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(3.6) Ω3(x) ≡ Ω(x) +
e−t − 1

1 + (e−t − 1)
∫ x
0
|h(t, λ0)|2dt

·
∂λ0

∂Ω(x)
.

In [17] there is also given a formula for changing finite number of eigenvalues or norming

constants. If we want to add n number of eigenvalues µk, to subtract m number of eigenvalues

λk and to scale l number of norming constants ak, then the formula for such potential Ω̃(x)

depending of initial potential Ω(x) will be:

(3.7)
Ω̃(x) ≡ Ω(x) +

n+m+l∑
k=1

γk

1 + γk
∫ x
0
|h(t,Ωk−1, νk)|2dt

·

·{Bh(x,Ωk−1, νk)h
∗(x,Ωk−1, νk)− h(x,Ωk−1, νk)h

∗(x,Ωk−1, νk)B}.

where

γk =

{ 1, 1 ≤ k ≤ n,

−1, n+ 1 ≤ k ≤ n+m,

e−t − 1, n+m+ 1 ≤ k ≤ n+m+ l,

νk =

{
µk, 1 ≤ k ≤ n,

λk, n+ 1 ≤ k ≤ n+m+ l,

and potential function Ω0(x) = Ω(x) and Ωk(x), for k = 0, 1, . . . , n + m + l, are given by

formula:

Ωk(x) = Ωk−1(x) +
γk

1 + γk
∫ x
0
|h(t,Ωk−1, νk)|2dt

·

·{Bh(x,Ωk−1, νk)h
∗(x,Ωk−1, νk)− h(x,Ωk−1, νk)h

∗(x,Ωk−1, νk)B}.

Using formula (2.3) we can rewrite the (3.7) in terms of eigenvalues’ gradient:

(3.8) Ω̃(x) ≡ Ω(x) +
n+m+l∑
k=1

γk

1 + γk
∫ x
0
|h(t,Ωk−1, νk)|2dt

·
∂νk

∂Ωk−1(x)
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