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Abstract. Convergence rate result for steepest descent method for nonlinear ill-posed

problems, under general Hölder-type source condition is not known. We consider a modi-

fied steepest descent method and obtained error estimate under general Hölder-type source

condition. Discrepancy principle for modified steepest descent method with noisy data is

also considered in this study. Numerical example is given to show the applicability of the

modified method.
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1. Introduction

Steepest descent type method is one of the iterative method used for approximately solving

the nonlinear ill-posed operator equation

(1.1) F (x) = y

when the exact data y is available. Here F : D(F ) ⊆ X → Y is a nonlinear Fréchect

differentiable operator between the Hilbert spaces X and Y and D(F ) denote the domain of

F. We assumed that the operator equation (1.1) has a solution x̂ for the exact data y and

that we have only approximate data yδ ∈ Y with

‖y − yδ‖ ≤ δ.

The operator equation (1.1) is ill-posed in the sense that the solution x̂ does not depend

continuously on the right hand side data y ( see [1–4] and reference therein). For exact data

y, steepest descent method was studied by Neubauer and Scherzer in [9] and they obtained

the convergence rate result under the source condition

x0 − x̂ = (F ′(x̂)∗F ′(x̂))
1
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for some v ∈ X. In [6], the authors studied the following modified steepest descent method

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)∗(F (xk)− y)

αk =
‖sk‖2

‖F ′(x0)sk‖2

and obtained the convergence rate result under the source condition

x0 − x̂ = (F ′(x0)∗F ′(x0))
1
2v

for some v ∈ X. But in the literature no convergence rate result is available under the general

Hölder-type source condition

(1.2) x0 − x̂ = (F ′(x̂)∗F ′(x̂))νv

or

(1.3) x0 − x̂ = (F ′(x0)∗F ′(x0))νv

for ν 6= 1
2
. To obtain the convergence rate result under (1.3), we considered a new modified

form of steepest descent method defined for k = 0, 1, 2, . . . by

xk+1 = xk + αksk

sk = −F ′(x0)∗(F (xk)− y)(1.4)

αk =
‖sk‖2

‖Aqsk‖2

where A = F ′(x0)∗F ′(x0) and 0 < q < 1
2
. We need the following assumptions (A):

(A0) ‖F ′(x)‖ ≤ m for some m > 0 and for all x ∈ D(F ).

(A1) F ′(x) = R(x, y)F ′(y) (x, y ∈ B(x0, ρ)) where {R(x, y) : x, y ∈ B(x0, ρ)} is a family

of bounded linear operators R(x, y) : Y −→ Y with

‖R(x, y)− I‖ ≤ C‖x− y‖

for some positive constant C.

We obtained the error estimate ‖xk−x̂‖ = O(k−ν), for 0 < 2ν < 1
2
−q, 0 < q < 1

2
under the

assumption (1.3)(see Theorem 2.3). For noisy data yδ, steepest descent method was studied

by Scherzer in [10]. But no convergence rate result was available in [10]. We considered the

method (1.4) with noisy data yδ and obtained error estimate as in [6].

The rest of the paper is structured as follows. Convergence analysis of method (1.4) is

given in Section 2 and Convergence rate result of method (1.4) with noisy data is given in

Section 3. Finally, the paper ends with an example in Section 4.
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2. Convergence analysis of method (1.4)

Our analysis in this section is based on the following result in [5](see [5, Lemma 2]). Let

{vk} be a sequence in X, ν > 0, be some parameter such that

‖Aνvk‖2 − ‖Aνvk+1‖2 ≥ εk〈Aν+1vk, A
νvk〉

for k = 0, 1, 2, . . . , where A is a positive self adjoint operator and εk > 0. Then

(2.1) ‖Aνvk‖ ≤ [2(ν + 1)]ν‖vk‖
1
ν+1

[
k−1∑
i=0

εi‖vi‖−
1
ν+1

]−ν
.

We shall apply the above result to vk = A−ν(xk − x̂). Therefore, in order to apply (2.1), we

need to prove;

(2.2) ‖xk − x̂‖2 − ‖xk+1 − x̂‖2 ≥ εk〈A(xk − x̂), xk − x̂〉

for some εk > 0 and ‖A−ν(xk − x̂)‖ is bounded. Let B = ‖A 1
2
−q‖ and D =

√
1+4B2−(B2+1)

B2 .

LEMMA 2.1. Let the assumption (A1) and (1.3) hold with 0 < 2ν < 1
2
− q, 0 < q < 1

2
and

let 0 < Cρ < D. Let xk be as in (1.4). Then, xk ∈ B(x0, 2ρ) and

(2.3) ‖xk+1 − x̂‖2 + αkΓ‖A
1
2 (xk − x̂)‖2 ≤ ‖xk − x̂‖2

with

(2.4) Γ = 2− (B2C2ρ2 + 2(B2 + 1)Cρ+B2),

for all k = 0, 1, 2, . . . . Moreover,

∞∑
k=0

αk‖A
1
2 (xk − x̂)‖2 <∞.

Proof. We shall prove the result using induction. Note that x0 ∈ B(x0, 2ρ) and suppose

xk ∈ B(x0, 2ρ). Then using (1.4), we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2

= −2αk〈xk − x̂, F ′(x0)∗(F (xk)− y)〉+ α2
k‖F ′(x0)∗(F (xk)− y)‖2

= −2αk〈xk − x̂, F ′(x0)∗ [F (xk)− F (x̂)− F ′(x0)(xk − x̂)]〉

+αk
[
αk‖F ′(x0)∗(F (xk)− y)‖2 − 2〈xk − x̂, F ′(x0)∗F ′(x0)(xk − x̂)〉

]
= −2αk〈F ′(x0)(xk − x̂),

∫ 1

0

(F ′(x̂+ t(xk − x̂))− F ′(x0)) dt(xk − x̂)〉

+αk

[
αk‖F ′(x0)∗(F (xk)− y)‖2 − 2‖A

1
2 (xk − x̂)‖2

]
.(2.5)
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So by assumption (A1), we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2

= −2αk〈F ′(x0)(xk − x̂),

∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I] dtF ′(x0)(xk − x̂)〉

+αk

[
αk‖F ′(x0)∗(F (xk)− y)‖2 − 2‖A

1
2 (xk − x̂)‖2

]
≤ 2αk

∫ 1

0

‖R(x̂+ t(xk − x̂), x0)− I‖‖F ′(x0)(xk − x̂)‖2dt

+αk

[
αk‖F ′(x0)∗(F (xk)− y)‖2 − 2‖A

1
2 (xk − x̂)‖2

]
≤ 2αkC‖x̂+ t(xk − x̂)− x0‖‖A

1
2 (xk − x̂)‖2

+αk

[
αk‖F ′(x0)∗(F (xk)− y)‖2 − 2‖A

1
2 (xk − x̂)‖2

]
.(2.6)

Note that

αk‖F ′(x0)∗(F (xk)− y)‖2 =
〈Aqsk, A−qsk〉2

‖Aqsk‖2

≤ ‖Aqsk‖2‖A−qsk‖2

‖Aqsk‖2

≤ ‖A
1
2
−q‖2‖F (xk)− y‖2

= ‖A
1
2
−q‖2‖

∫ 1

0

F ′(x̂+ t(xk − x̂))dt(xk − x̂)‖2.

By assumption (A1), we have

αk‖F ′(x0)∗(F (xk)− y)‖2

≤ ‖A
1
2
−q‖2‖

∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I + I] dtF ′(x0)(xk − x̂)‖2

≤ ‖A
1
2
−q‖2 (C‖x̂+ t(xk − x̂)− x0‖+ 1)2 ‖F ′(x0)(xk − x̂)‖2

≤ B2(Cρ+ 1)2‖A
1
2 (xk − x̂)‖2.(2.7)

Therefore, by (2.6) and (2.7) we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2 ≤
[
B2C2ρ2 + 2(B2 + 1)C1ρ+B2 − 2

]
αk‖A

1
2 (xk − x̂)‖2.

This completes the proof. �

Next we will prove the boundedness of ‖A−ν(xk− x̂)‖. Let B1 = ‖A 1
2
−ν−q‖, 0 < 2ν < 1

2
− q

with 0 < q < 1
2
.

LEMMA 2.2. Let the assumption (A1) and (1.3) hold with 0 < 2ν < 1
2
− q, 0 < q < 1

2
and

0 < Cρ < D. Let xk be as in (1.4). Then, ‖A−ν(xk − x̂)‖ is bounded.
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Proof. By using (1.3), one can prove that xk − x̂ ∈ R(Aν) for all k = 0, 1, 2, . . . . So, we

can apply A−ν to xk+1 − x̂ and xk − x̂. Then, we have

‖A−ν(xk+1 − x̂)‖2 − ‖A−ν(xk − x̂)‖2

= −2αk〈A−ν(xk − x̂), A−νF ′(x0)∗(F (xk)− y)〉

+α2
k‖A−νF ′(x0)∗(F (xk)− y)‖2

≤ 2αk‖A−ν(xk − x̂)‖‖A−νF ′(x0)∗(F (xk)− y)‖

+α2
k‖A−νF ′(x0)∗(F (xk)− y)‖2.(2.8)

From (2.8), we have

(2.9) ‖A−ν(xk+1 − x̂)‖ ≤ ‖A−ν(xk − x̂)‖+ αk‖A−νF ′(x0)∗(F (xk)− y)‖.

By the definition of αk, we have

αk‖A−νF ′(x0)∗(F (xk)− y)‖2 ≤ ‖Aν‖2‖A−νsk‖2

‖Aqsk‖2
‖A−νsk‖2

=
‖Aν‖2

‖Aqsk‖2
〈Aqsk, A−2ν−qsk〉2

≤ ‖Aν‖2‖A
1
2
−2ν−q‖2‖F (xk)− y‖2.(2.10)

Using Assumption (A1) in (2.10), we get

αk‖A−νF ′(x0)∗(F (xk)− y)‖2

= ‖A
1
2
−2ν−q‖2‖

∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I + I] dtF ′(x0)(xk − x̂)‖2

≤ ‖A
1
2
−2ν−q‖2 (C‖x̂+ t(xk − x̂)− x0‖+ 1)2 ‖F ′(x0)(xk − x̂)‖2

≤ B2
1(Cρ+ 1)2‖A

1
2 (xk − x̂)‖2,(2.11)

i.e.,

(2.12)
√
αk‖A−νF ′(x0)∗(F (xk)− y)‖ ≤ B1(Cρ+ 1)‖A

1
2 (xk − x̂)‖.

Using (2.12) in (2.9), we have

(2.13) ‖A−ν(xk+1 − x̂)‖ ≤ ‖A−ν(xk − x̂)‖+
√
αkB1(Cρ+ 1)‖A

1
2 (xk − x̂)‖.

Let zk = ‖A−ν(xk − x̂)‖. Then by (2.13), we have

zk+1 ≤ zk +B1(Cρ+ 1)
√
αk‖A

1
2 (xk − x̂)‖.

By induction

(2.14) zk ≤ z0 +B1(Cρ+ 1)
k−1∑
i=0

√
αi‖A

1
2 (xi − x̂)‖.
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Since the series
∑∞

k=0 αk‖A
1
2 (xk − x̂)‖2 is bounded, there exists M > 0 such that

(2.15)
k−1∑
i=0

√
αi‖A

1
2 (xi − x̂)‖ ≤M.

So by (2.14) and (2.15), we have

zk ≤ z0 +B1(Cρ+ 1)M.

Since z0 = ‖A−ν(x0 − x̂)‖ = ‖A−νAνv‖ = ‖v‖,

(2.16) zk ≤ ‖v‖+B1(Cρ+ 1)M.

This completes the proof. �

THEOREM 2.3. Let the assumption (A1) and (1.3) for 0 < 2ν < 1
2
− q, 0 < q < 1

2
hold

and let 0 < Cρ < D. Let xk be as in (1.4). Then

‖xk − x̂‖ ≤ C̃k−ν

where C̃ = [2(ν + 1)]νε−ν (‖v‖+B1(Cρ+ 1)M) .

Proof. Note that αk ≥ ‖Aq‖−2. Since (A1) and (1.3) for 0 < 2ν < 1
2
−q hold and Cρ < D.

Set εk := ε = Γ‖Aq‖−2 where Γ is as in (2.4). Now Lemma 2.2 implies

‖xk − x̂‖2 − ‖xk+1 − x̂‖2 ≥ Γαk‖A
1
2 (xk − x̂)‖2

≥ Γ‖Aq‖−2‖A
1
2 (xk − x̂)‖2

= ε‖A
1
2 (xk − x̂)‖2

= ε〈F ′(x0)∗F ′(x0)(xk − x̂), xk − x̂〉

= ε〈A(xk − x̂), xk − x̂〉.

Therefore by (2.1), we have

‖xk − x̂‖ ≤ [2(ν + 1)]ν‖A−ν(xk − x̂)‖
1
ν+1

[
k−1∑
i=0

εi‖A−ν(xi − x̂)‖
−1
ν+1

]−ν

≤ [2(ν + 1)]νz
1
ν+1

k ε−ν

[
k−1∑
i=0

z
− 1
ν+1

i

]−ν
.(2.17)

So by (2.16) and (2.17), we have

‖xk − x̂‖ ≤ [2(ν + 1)]νε−ν (‖v‖+B1(Cρ+ 1)M) k−ν(2.18)

≤ C̃k−ν .

�
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REMARK 2.4. Note that as q → 0, we have ν → 1
4
. So we obtain the error estimate

‖xk − x̂‖ = O(k−ν) for 0 < ν < 1
4

under general Hölder-type source condition (1.3).

3. Convergence rate result of method (1.4) with noisy data

To obtain the error estimate for steepest descent method with noisy data we need the

following assumption in addition to the earlier assumptions. As in [7], we assume that: (A2)

F satisfies the local property

‖F (u)− F (v)− F ′(x0)(u− v)‖ ≤ η‖F (u)− F (v)‖,(3.1)

for all u, v ∈ B(x0, ρ) with max{1−B2

3
, 0} < η < 1− B2

2
.

The proofs of the following Proposition 3.1, Lemma 3.2 and Theorem 3.3 are analogous

to the proof of Proposition 3.1, Lemma 3.3 and Theorem 3.4 in [6].

PROPOSITION 3.1. (cf. [6], Proposition 3.1) Let the assumption (A2) hold. Let xδk be

as in (1.4) with y replaced by yδ. Then, xδk ∈ B(x0, 2ρ) ⊂ D(F ) for all k = 0, 1, 2, . . . and

(3.2) ‖F (xδk)− yδ‖ > τδ

where

τ > 2
(1 + η)

2− 2η −B2
> 2.(3.3)

Moreover for all 0 ≤ k < k∗ with τ as in (3.3), then we have

(3.4) k∗(τδ)
2 ≤

k∗−1∑
k=0

‖F (xδk)− yδ‖2 ≤ τ‖F ′(x0)‖2

(2− 2η −B2)τ − 2(1 + η)
‖x0 − x̂‖2.

LEMMA 3.2. (cf. [6], Lemma 3.3) Let Cρ < 2(τ−2)
τ

. Then δ ≤ (1− C
2
‖xδk− x̂‖)‖F ′(x̂)(xδk−

x̂)‖ for all 0 < k ≤ k∗.

Let Ω := ‖Aq‖−2
(

(2− 2η −B2)− 2 (1+η)
τ

)
.

THEOREM 3.3. (cf. [6], Theorem 3.4) Let the assumption (A) hold and let

Cρ < min
{

2(τ−2)
τ

, 2
m
√

Ω
, 1
}
. Let xδk+1 be as in (1.4). Then for 0 ≤ k < k∗,

(3.5) ‖xδk+1 − x̂‖ =

{
O(q

k+1
2 ) if δ < qk+1

O(δ
1
2 ) if qk+1 ≤ δ

where q := max
{

1− C2Ω
4
‖F ′(x̂)(xδi − x̂)‖2 : i = 0, 1, 2, . . . k

}
.

7



REMARK 3.4. Note that for each i,

C2Ω

4
‖F ′(x̂)(xδi − x̂)‖2 ≤ C2Ω

4
‖F ′(x̂)‖2‖(xδi − x̂)‖2

≤ C2Ω

4
m2ρ2.

Since Cρ < 2
m
√

Ω
, for i = 0, 1, 2, . . . k, C

2Ω
4
‖F ′(x̂)(xδi−x̂)‖2 < 1. Therefore 1− C2Ω

4
‖F ′(x̂)(xδi−

x̂)‖2 < 1 which implies q < 1.

4. Example

In this section, we consider the following example to implement the method (1.4)( see [8])

EXAMPLE 4.1. (cf. [8]) Consider a nonlinear operator equation F : L2[0, 1] → L2[0, 1]

defined by

(4.6) F (x) := (arctan(x))2.

The Fréchet derivative of F is

F ′(x)w =
2arctan(x)

1 + x2
w.

If x(t) vanishes on a set of positive Lebesgue measure, then F ′(x) is not boundedly in-

vertible. If x ∈ C[0, 1] vanishes even at one point t0, then F ′(x) is not boundedly invertible

in L2[0, 1].

Note that

F ′(x)w = R(x, x0)F ′(x0)w

with

R(x, x0) =
1 + x2

0

1 + x2

arctan(x)

arctan(x0)
,

respectively. Further, for x0 6= 0,

‖R(x, x0)− I‖ ≤
[

1

‖arctan(x0)‖
+ 2 max{‖x‖, ‖x0‖}

]
‖x− x0‖.

That is, assumption (A1) is satisfied. Let us take x̂(t) = t, t ∈ [0, 1] and y(t) = arctan(t)2.

We have taken initial guess x0(t) = t/2 and q = 1
4
. Therefore ν < 1

8
. For nosie free case, error

estimates are given in table 1 and approximate solutions are given in figure 1. For noisy

data, we have taken τ = 2.1 and the error estimates are given in table 2 with different values

of δ. Approximate solutions are given in figure 2(a), figure 2(b), figure 2(c) and figure 2(d).
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Table 1. Error estimate for the method (1.4) with exact data

k ‖xk − x̂‖ ‖xk−x̂‖
k
1
8

10 1.2173E-02 9.1287E-03

20 6.3958E-03 4.3981E-03

30 3.3920E-03 2.2172E-03

40 1.7654E-03 1.1132E-03

50 9.0892E-04 5.5739E-04

60 4.6533E-04 2.7893E-04

70 2.3753E-04 1.3966E-04

80 1.2107E-04 7.0008E-05

90 6.1662E-05 3.5135E-05

100 3.1393E-05 1.7654E-05

Table 2. Error estimate for the method (1.4) with noisy data

δ k ‖xδk − x̂‖
‖xδk−x̂‖

δ
1
2

0.1 2 5.3985E-02 1.7072E-01

0.01 4 3.0498E-02 3.0498E-01

0.001 13 8.7840E-03 2.7778E-01

0.0001 48 8.6070E-04 8.6070E-02
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