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ABSTRACT. Convergence rate result for steepest descent method for nonlinear ill-posed
problems, under general Holder-type source condition is not known. We consider a modi-
fied steepest descent method and obtained error estimate under general Holder-type source
condition. Discrepancy principle for modified steepest descent method with noisy data is
also considered in this study. Numerical example is given to show the applicability of the
modified method.
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1. INTRODUCTION

Steepest descent type method is one of the iterative method used for approximately solving

the nonlinear ill-posed operator equation
(1.1) Fz) =y

when the exact data y is available. Here F' : D(F) C X — Y is a nonlinear Fréchect
differentiable operator between the Hilbert spaces X and Y and D(F') denote the domain of
F. We assumed that the operator equation (1.1) has a solution z for the exact data y and

that we have only approximate data y° € Y with
ly =4Il < 6.

The operator equation (1.1) is ill-posed in the sense that the solution & does not depend
continuously on the right hand side data y ( see [1-4] and reference therein). For exact data
y, steepest descent method was studied by Neubauer and Scherzer in [9] and they obtained

the convergence rate result under the source condition

20 — & = (F'(2)*F'(2))2v
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for some v € X. In [6], the authors studied the following modified steepest descent method

LTetr1 — Tk + O Sk (k:0,1,2,)

s = —F'(o) (F(ay) — )
sl
T F (o) sil?

and obtained the convergence rate result under the source condition
o — & = (F'(x0)"F'(x0)) 20

for some v € X. But in the literature no convergence rate result is available under the general

Holder-type source condition

(1.2) xo— & = (F'(2)" F'(%))"v
(1.3) o — & = (F'(x9)" F'(x9))"v

for v # . To obtain the convergence rate result under (1.3), we considered a new modified

form of steepest descent method defined for k£ =0,1,2,... by

Tpr1 = Tk + QpSg
(1.4) s = —F(z0)"(F(a) — y)
R
| A7sy[|?

where A = F'(z0)*F'(z0) and 0 < ¢ < 3. We need the following assumptions (A):

(Ao) ||1F'(z)|| < m for some m > 0 and for all z € D(F).
(Ay) F'(z) = R(x,y)F'(y) (z,y € B(zo,p)) where {R(z,y) : z,y € B(xo,p)} is a family
of bounded linear operators R(z,y) : Y — Y with

[1R(z,y) = I|| < Cllz —y]|

for some positive constant C.

We obtained the error estimate ||zx — 2| = O(k™), for 0 < 2v < $—¢,0 < ¢ < 5 under the
assumption (1.3)(see Theorem 2.3). For noisy data y°, steepest descent method was studied
by Scherzer in [10]. But no convergence rate result was available in [10]. We considered the
method (1.4) with noisy data y° and obtained error estimate as in [6].

The rest of the paper is structured as follows. Convergence analysis of method (1.4) is
given in Section 2 and Convergence rate result of method (1.4) with noisy data is given in

Section 3. Finally, the paper ends with an example in Section 4.
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2. CONVERGENCE ANALYSIS OF METHOD (1.4)

Our analysis in this section is based on the following result in [5|(see [5, Lemma 2]). Let

{vr} be a sequence in X, v > 0, be some parameter such that

[A 012 — [ A v |]* > ex (A" og, Avg)

for k=0,1,2,..., where A is a positive self adjoint operator and e > 0. Then
1 k! 1 -
2.) 4% < 200+ D] ol [Z &”“i“_”“] |
i=0

We shall apply the above result to vy = A7 (xy — Z). Therefore, in order to apply (2.1), we

need to prove;

(2.2) lax = 2]° = [logs — 2]° > ex(Alzg — 3), 25, — 2)

for some ¢, > 0 and ||A™(z, — #)]| is bounded. Let B = ||A279|| and D = Y25 (54D 1+4B;(32+1),

LEMMA 2.1. Let the assumption (A;) and (1.3) hold with 0 < 2v < § —¢,0 < ¢ < 3 and
let 0 < Cp < D. Let xy be as in (1.4). Then, xy € B(xg,2p) and

(2.3) a1 = &[7 + D[ A2 (2 — )| < ||k — 22
with
(2.4) I =2— (B*C?p* +2(B*+1)Cp + B?),

forall k=0,1,2,.... Moreover,

(o]

1 A
> agl|A2 (2 — 2)|* < 0.
k=0

Proof. We shall prove the result using induction. Note that zo € B(z,2p) and suppose
x € B(xg,2p). Then using (1.4), we have

k1 — 2|° = o — 2]
= 2 (xy — 2, F'(20)"(F(x) — y)) + ag | F'(x0)* (F (xx) — »)|I”
= 2ap(xp — T, F'(x0)" [F(xy) — F(Z) — F'(x0)(x1, — 2)])

+oy (gl F' (20)* (F (k) — y)II” — 2(ex — &, F' (20)* F' (20) (24 — )]
= =20, (F'(x0) (2}, — i:),/o (F'(2 + t(zp — 2)) — F'(x0)) dt(zy, — 1))

(2.5) o [l F' (o) (F (k) = y)|I? = 20143 (i — 2]
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So by assumption (A;), we have
k1 = 2| = [l — ]
1
= =204, (F'(x0)(xp — i),/ [R(% + t(zy — &), 20) — I] dtF" (zo) (2 — T))
0

o |l /(o) (Faw) = y)|I* = 2] 43 (00— )]

IN

1
20%/ 1R(@ + t(zx — 2), z0) — L[| (o) (zx — )|t
0

o | [F'(o)* (F () = 9)* = 20142 (o — &)
200 C & + t(ax — ) — woll[| A2 (2 — 2)
(2.6) o [l F' (o) (Flag) = y)|I° = 20|43 (i — 2)]2]

IN

Note that

(Als),, A™9s,)?
[As, 2

A9 2| A5 ])?

= [Asy 2

< AP F ) -y

1
= Ak / F(& + tlan — 2))dt(e — )|

|| F' ()" (F(ar) — y)lI* =

By assumption (.A4;), we have

|| F' (o) (F () — y)II”

1
< [lAzTe)? / [R(& + t(xx — &), 0) — [ + I]dtF" (o) (), — 7)]||?
0
< A2 (O3 + t(ag — ) — wol| + 1) | F (z0) (zx, — 7)]?
(2.7) < BXCp+1)?||A7 (a — 2)|%.

Therefore, by (2.6) and (2.7) we have
lzna = &> = llax — &[> < [BC?0” + 2(B> + 1)Cip + B — 2] ay| A2 (i — )
This completes the proof. 0
Next we will prove the boundedness of || A~ (z, — #)||. Let By = [|A2774||,0 < 2v < $—q
with 0 < ¢ < 1.

LEMMA 2.2. Let the assumption (A;) and (1.3) hold with 0 < 2v < 3 —¢,0 < ¢ < 3 and
0<Cp<D. Let xy be as in (1.4). Then, ||[A™"(x, — Z)|| is bounded.
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Proof. By using (1.3), one can prove that z;, — & € R(A”) for all k =0,1,2,.... So, we

can apply A7 to .1 — & and xp — 2. Then, we have
IA™ (@ = 2)|* = [ A7 (@ — 2) ||
= 205 (A7 (2 — &), A7V ()" (F () — v))
+OR|| AT F (o) (F () — )|
20| AT (e — D) | AT F' (o) (F (k) — )
(2.8) +ap | AT (o) (F () — y)|I*.

IN

From (2.8), we have

(2.9) A (zpr — 2)|| < AT (2 = 2)[| + o | AT F (o) " (F () — y)lI.
By the definition of oy, we have
A~ Py () — )t < LI v
LA ey
(2.10) < AIPIAEE P F ) - ol

Using Assumption (A;) in (2.10), we get
| AT F (o) (F (xi) — y)II”

1
= HA””HQH/O [R(& + t(zx — 2),w0) — 1 + [ dtF" (o) (z — 2)||”

< A2 (O3 + g — ) — wol| + 1) | F (z0) (zx, — 7)]?
(2.11) < BXCp+1)Y|Az(zy, — 2)|2,
ie.,
(2.12) V|| ATF (20)*(F(xx) — y)|| < Bi(Cp + 1)|| A2 (24 — 7).

Using (2.12) in (2.9), we have
(213) A (wpn — D) < |4 (5k — )| + VARB(Cp+ 1) A} (i — D).
Let z;, = ||A™"(zx — 2)||. Then by (2.13), we have

21 < 2+ Bi(Cp + 1)/ag|| A2 (z — 7).

By induction

k—1
(2.14) 2 < 2o+ Bi(Cp+ 1) Y Vil A2 (w; — 2)]].
=0
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Since the series Y- || A2 (z), — £)|| is bounded, there exists M > 0 such that

(2.15) Z Vail| A% (2 — 2)]| < M.
i=0
So by (2.14) and (2.15), we have
2z < 2o+ B1(Cp+ 1) M.
Since 20 = | A~ (zy — &)]| = A= A%0] = o]
(2.16) 2z < ||v|| + B1(Cp+ 1) M.
This completes the proof. 0

THEOREM 2.3. Let the assumption (A;) and (1.3) for 0 < 2v < $ —¢,0 < ¢ < 1 hold
and let 0 < Cp < D. Let xy be as in (1.4). Then

lax — &) < Ck™
where C = [2(v + )]7e ™ (||lv|| + B1(Cp + 1) M) .

Proof. Note that ay, > [|A?]|72. Since (A;) and (1.3) for 0 < 2v < $ —¢ hold and Cp < D.
Set ¢, := € = T'||A?|| 7 where T is as in (2.4). Now Lemma 2.2 implies
oy = &) = llzgs — 27 > Taxl|A2 (ax — 2)]
> Tl A% (o — 2|
ell A2 (i — &)
e(F'(x0)" F'(x0) () — T), 11, — )
= e(A(xy —T), 2 — ).

Therefore by (2.1), we have

k-1 v
lew — 2l < 20+ DA (2 — 2)[57 [Z €l A7 (2 — 2)[| 75
i=0
k—1 v
(2.17) < R+ 1) —”[ 2 ”+1] .
1=0
So by (2.16) and (2.17), we have
(2.18) lee =2 < R+ D e (loll + B (Cp + 1)M) k™

< Ck™.



REMARK 2.4. Note that as ¢ — 0, we have v — %t. So we obtain the error estimate

|zp — ]| = O(k™) for 0 < v < I under general Holder-type source condition (1.3).

3. CONVERGENCE RATE RESULT OF METHOD (1.4) WITH NOISY DATA

To obtain the error estimate for steepest descent method with noisy data we need the
following assumption in addition to the earlier assumptions. As in [7], we assume that: (A3)

I satisfies the local property
(3.1) 1F'(u) — F(v) = F'(zo)(u — ) || < nl[F(u) — F(v)],

for all u,v € B(xg, p) with max{%,O} <np<l- %2,
The proofs of the following Proposition 3.1, Lemma 3.2 and Theorem 3.3 are analogous

to the proof of Proposition 3.1, Lemma 3.3 and Theorem 3.4 in [6].

PROPOSITION 3.1. (cf. [6], Proposition 3.1) Let the assumption (Az) hold. Let z3 be
as in (1.4) with y replaced by y°. Then, x§ € B(x,2p) C D(F) for all k =0,1,2,... and

(3.2) IF(zy) — || > 76
where
(1+n)
) 22— > 2
(3.3) T > 2—277—B2>

Moreover for all 0 < k < k, with T as in (3.3), then we have

ki—1
\ F' (o) ” ;
' 2 5y _ 002 < 7|l 0 — 212

LEMMA 3.2. (cf. [6], Lemma 3.3) Let Cp < 272 Then 6 < (1— S |2 —2|)|| F"(2)(2] —
z)|| for all 0 < k < k.

Let © = A7) 2 (2 — 27 — B?) — 22

THEOREM 3.3. (¢f. [6], Theorem 3.4) Let the assumption (A) hold and let

Cp < min{@,ﬁﬁ,l}. Let 29, be as in (1.4). Then for 0 <k < ki,

g o) i o< gt

(3.5) 31 — 2 = 1 e e
0(62) if ¢ <6

whereq::max{l—%HF’(@)(JE‘S £)||2:@':0,1,2,...k}.

i_

7



REMARK 3.4. Note that for each 1,

C?*Q R R %0 . .
4HF@Mﬁ—wW2§ 4HF@Wﬂ@€—@W
2Q)
< OTmeQ.

Since Cp < ﬁﬁ’ fori=0,1,2,...k, %HF’(@)(&:?—:&)HZ < 1. Therefore 1—%”]”(@)(9&?—

2)||* < 1 which implies q < 1.

4. EXAMPLE

In this section, we consider the following example to implement the method (1.4)( see [8])

EXAMPLE 4.1. (c¢f. [8]) Consider a nonlinear operator equation F : L*[0,1] — L?[0,1]
defined by

(4.6) F(x) := (arctan(z))?.

The Fréchet derivative of F' is

2arctan(x)

Fl(g)w = 29T

(@hw=—""5

If 2(t) vanishes on a set of positive Lebesgue measure, then F’(x) is not boundedly in-
vertible. If # € C]0, 1] vanishes even at one point to, then F’(z) is not boundedly invertible
in L2[0, 1].

Note that

F'(x)w = R(z,x0)F' (zo)w

with
Rz, o) = 1+ 23 arctan(z)

1+ 22arctan(xg)’

respectively. Further, for zy # 0,

1

R — = \odganta i
[1B(x, z0) — I]| < |arctan(zo)||

+ 2max{[[z[], [zl } | I+ — ol

That is, assumption (A;) is satisfied. Let us take Z(t) = ¢,t € [0,1] and y(t) = arctan(t)?.
We have taken initial guess xy(t) = t/2 and ¢ = }1. Therefore v < %. For nosie free case, error
estimates are given in table 1 and approximate solutions are given in figure 1. For noisy
data, we have taken 7 = 2.1 and the error estimates are given in table 2 with different values

of 6. Approximate solutions are given in figure 2(a), figure 2(b), figure 2(c) and figure 2(d).
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TABLE 1. Error estimate for the method (1.4) with exact data

TABLE 2. Error estimate for the method (1.4) with noisy data

One of the authors, Ms. Sabari, thanks National Institute of Technology Karnataka, India,

for the financial support.

k

[k — ]

llze—2

1
k38

10
20
30
40
20
60
70
80
90
100

1.2173E-02
6.3958E-03
3.3920E-03
1.7654E-03
9.0892E-04
4.6533E-04
2.3753E-04
1.2107E-04
6.1662E-05
3.1393E-05

9.1287E-03
4.3981E-03
2.2172E-03
1.1132E-03
5.5739E-04
2.7893E-04
1.3966E-04
7.0008E-05
3.5135E-05
1.7654E-05

o | k] Jag-a) | BT
0.1 5.3985E-02 | 1.7072E-01
0.01 3.0498E-02 | 3.0498E-01
0.001 | 13| 8.7840E-03 | 2.7778E-01
0.0001 | 48 | 8.6070E-04 | 8.6070E-02
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—©&— Exact solution
0.9 | | — % — Approximation 10 i

Approximation 20
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0.8 Approximation 40 1
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Approximation 80
0.6 | — % — Approximation 90 4
— % — Approximation 100

FIGURE 1. Approximate solutions for nosie free data
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FIGURE 2. Approximate solutions for noisy data
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