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Abstract. In the present investigation an upper bound of the second Hankel determi-
nant |a2a4 − a23| for the functions belonging to the classes S∗j,k and Kj,k are studied.
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1. Introduction

Let A denote the class of functions of form

(1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}, and S denote
the subclass of A consisting of all function which are univalent in U . For f and g

analytic in U , we say that the function f is subordinate to g in U , if there exists an
analytic function ω in U such that |ω(z)| < 1 and f(z) = g(ω(z)), and we denote this by
f ≺ g. If g is univalent in U , then the subordination is equivalent to f(0) = g(0) and
f(U) ⊂ g(U). The convolution or Hadamard product of two analytic functions f, g ∈ A
where f is defined by (1) and g(z) = z +

∑∞
n=2 gnz

n, then

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

Definition 1.1. Let k be a positive integer. A domain D is said to be k-fold symmetric
if a rotation of D about the origin through an angle 2π

k
carries D onto itself. A function

f is said to be k-fold symmetric in U if for every z in U

f(e
2πi
k z) = e

2πi
k f(z).

The family of all k-fold symmetric functions is denoted by Sk and for k = 2 we get class
of the odd univalent functions.
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The notion of (j, k)-symmetrical functions (k = 2, 3, ... ; j = 0, 1, 2, ..., k − 1) is a gen-
eralization of the notion of even, odd, k-symmetrical functions and also generalize the
well-known result that each function defined on a symmetrical subset can be uniquely
expressed as the sum of an even function and an odd function.
The theory of (j, k) symmetrical functions has many interesting applications, for in-
stance in the investigation of the set of fixed points of mappings, for the estimation
of the absolute value of some integrals, and for obtaining some results of the type of
Cartan uniqueness theorem for holomorphic mappings [10].

Definition 1.2. Let ε = (e
2πi
k ) and j = 0, 1, 2, .., k − 1 where k ≥ 2 is a natural number.

A function f : U 7→ C is called (j, k)-symmetrical if

f(εz) = εjf(z), z ∈ U .

We note that the family of starlike functions with respect to (j, k)-symmetric points
is denoted be S(j,k). Also, S(0,2), S(1,2) and S(1,k) are called even, odd and k-symmetric
functions respectively. We have the following decomposition theorem.

Theorem 1.3. [10] For every mapping f : D 7→ C, and D is a k-fold symmetric set,
there exists exactly the sequence of (j, k)- symmetrical functions fj,k,

f(z) =
k−1∑
j=0

fj,k(z)

where

(2) fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz),

(f ∈ A; k = 1, 2, ...; j = 0, 1, 2, ..., k − 1)

From (3) we can get

fj,k(z) =
1

k

k−1∑
v=0

ε−vjf(εvz) =
1

k

k−1∑
v=0

ε−vj

(
∞∑
n=1

an(ε
vz)n

)
,

then

fj,k(z) =
∞∑
n=1

δn,janz
n, a1 = 1

(3) ψn =
1

k

k−1∑
v=0

ε(n−j)v =

1, n = lk + j;

0, n 6= lk + j;
,
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We denote by S∗, K, S∗s , Ks the familiar subclasses consisting of functions which,
respectively, starlike, convex, starlike with respect to symmetric points and convex
with respect to symmetric points in U .

Definition 1.4. A function f(z) ∈ A is in the class S∗j,k if

<
{
zf ′(z)

fj,k(z)

}
> 0,

where fj,k defined by (2).

Definition 1.5. A function f(z) ∈ A is in the class Kj,k if

<

{
(zf ′(z))′

f ′j,k(z)

}
> 0,

where fj,k defined by (2).

In 1976, Noonan and Thomas [6] stated the qth Hankel determinant of f(z) for q ≥ 1

and n ≥ 1 as ∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 ... ... ...

... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣∣∣
, a1 = 1,

This determinant has also been considered by several authors. For example Noor in
[7] determined the rate of growth Hq(k) as k → ∞ for functions f given by (1) with
bounded boundary. Ehrenborg in [11] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [14].
Easily, one can observe that the Fekete and Szegö functional is H2(1). Fekete and
Szegö [1] then further generalised the estimate |a3 − µa22| where µ is real and f ∈ S.

For our discussion in this paper, we consider the Hankel determinant tn the case of
q = 2 and n = 2, known as second Hankel determinant:

H2(2) =

∣∣∣∣∣ a2 a3

a3 a4

∣∣∣∣∣ = |a2a4 − a23|,
and obtain an upper bound to H2(2) for f(z) ∈ Sj,k and f(z) ∈ Kj,k. Janteng et al.

[5] have considered the functional |H2(2)| and found a sharp bound, the subclass of
S as <{f ′(z)} > 0. In their work, they have shown that if f ∈ S, then |H2(2)| ≤ 4/9.
These authors [4, 8] also studied the second Hankel determinant and sharp bound
for the classes of starlike and convex functions, close-to-starlike and close-to-convex
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functions with respect to symmetric points have shown that |H2(2)| ≤ 1, |H2(2)| ≤ 1/8,
|H2(2)| ≤ 1, |H2(2)| ≤ 1/9, respectively.

2. Preliminary Results

Let P be the family of all functions p analytic in U for which <{p(z)} > 0 and

p(z) = 1 + p1z + p2z
2 + ..., z ∈ U

Lemma 2.1. [9] If p ∈ P, then |pn| ≤ 2, (n = 1, 2, 3, ...).

Lemma 2.2. [12,13] If p ∈ P, then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)z,

for some x and z satisfying |x| ≤ 1, |z| ≤ 1 and p1 ∈ [0, 2].

3. Main Result

Theorem 3.1. Let f ∈ S∗j,k, then

|a2a4 − a23| ≤
4

δ23
,(4)

where δn = n− ψn and ψn defined by (3).

Proof. Since f ∈ S∗j,k, then there exist p ∈ P such that

zf ′(z)

fj,k(z)
= p(z),

or
1 +

∑∞
n=2 nanz

n−1∑∞
n=1 ψnanz

n−1 = 1 + p1z + p2z
2 + p3z

3 + ....(5)

Equating coefficients in (5) yields

ψ1 = 1, a2 =
p1
δ2
, a3 =

1

δ3

[
p2 +

ψ2p
2
1

δ2

]
,(6)

a4 =
1

δ4

[
p3 +

ψ2p1p2
δ2

+
ψ3p1
δ3

(
p2 +

ψ2p
2
1

δ2

)]
.(7)
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By (6), (7) we get

|a2a4 − a23| =

∣∣∣∣∣ p1δ2δ4
[
p3 +

ψ2p1p2
δ2

+
ψ3p1
δ3

(
p2 +

ψ2p
2
1

δ2

)]
− 1

δ23

[
p2 +

ψ2p
2
1

δ2

]2∣∣∣∣∣ .(8)

Using Lemma (2.1) and Lemma (2.2) in (8) we get

|a2a4 − a23| =(9) ∣∣∣∣∣∣∣∣
p1

4δ2δ4

[
p31 + 2p1(4− p21)x− p1(4− p21)x

2 + 2(4− p21)(1− |x|2)z
]

+ p1
δ2δ4

[
ψ2p1
2δ2
{p21 + (4− p21)x}+

ψ3p1
2δ3
{p21 + (4− p21)x+

2ψ2p
2
1

δ2
}
]

− 1
δ23

[
1
4{p

4
1 + 2p21(4− p21)x+ (4− p21)

2x2}+ (p21 + (4− p21)x)
ψ2p

2
1

δ2
+

ψ2
2p

4
1

δ22

]
∣∣∣∣∣∣∣∣ .

=

∣∣∣∣∣∣∣∣∣

[
1

2δ2δ4

{
1 + ψ2

δ2
+ ψ3

δ3

}
− 1

2δ23
− ψ2

δ2δ23

]
p21(4− p21)x

−
[

p21
4δ2δ4

+
(4−p21)
4δ23

]
(4− p21)x2 +

p1(4−p21)(1−|x|2)z
2δ2δ4

+p41

[
1

δ2δ4

{
1
4
+ ψ2

2δ2
+ ψ3

2δ3
+ ψ2ψ3

δ2δ3

}
− 1

4δ23
− ψ2

δ2δ23
− ψ2

2

δ22δ
2
3

]
∣∣∣∣∣∣∣∣∣ .

Assume that p1 = p and p ∈ [0, 2], using triangular inequality and |z| ≤ 1, we have:

|a2a4 − a23| ≤(10) 
[

1
2δ2δ4

{
1 + ψ2

δ2
+ ψ3

δ3

}
+ ψ2

δ2δ23
− 1

2δ23

]
p2(4− p2)µ

+
[

p2

4δ2δ4
+ (4−p2)

4δ23

]
(4− p2)µ2 + p(4−p2)(1+µ2)

2δ2δ4

+p4
[

1
δ2δ4

{
1
4
+ ψ2

2δ2
+ ψ3

2δ3
+ ψ2ψ3

δ2δ3

}
+ ψ2

δ2δ23
− 1

4δ23
− ψ2

2

δ22δ
2
3

]
 = F (p, µ).

Where µ = |x| ≤ 1.

We next maximize the function F (p, µ) on the closed square [0, 2]×[0, 1]. Differentiating
F (p, µ) in (10) partially with respect to µ, we get.

∂F (p, µ)

∂µ
=

[
p(p+ 2)

4δ2δ4
+

(4− p2)
4δ23

]
2(4− p2)µ(11)

+

[
1

2δ2δ4

{
1 +

ψ2

δ2
+
ψ3

δ3

}
+

ψ2

δ2δ23
− 1

2δ23

]
p2(4− p2).

For 0 < µ < 1 and for fixed 0 < p < 2, from (11), we observe that ∂F (p,µ)
∂µ

> 0. Conse-
quently, F (p, µ) is increasing function of µ. Hence for fixed p ∈ [0, 2], the maximum of
F (p, µ)) occurs at µ = 1, and

max

0 ≤ µ ≤ 1
F (p, µ) = F (p, 1) = G(p).(12)

From the relations (10) and (12), upon simplification, we obtain

G(p) = F (p, 1) =

[
ψ2ψ3

δ22δ3δ4
+

1

2δ23
− ψ2

2

δ22δ
2
3

− 1

2δ2δ4

]
p4 − p3(13)
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+

[
2

δ2δ4

{
1 +

ψ2

δ2
+
ψ3

δ3

}
+

4ψ2

δ2δ23
+

1

δ2δ4
− 1

δ23

]
p2 +

4

δ2δ4
p+

4

δ23
.

Assume that G(p) has a maximum value an interior of p ∈ [0, 2], by elementary
calculation we find

G′(p) = 4

[
ψ2ψ3

δ22δ3δ4
+

1

2δ23
− ψ2

2

δ22δ
2
3

− 1

2δ2δ4

]
p3 − 3p2

+2

[
2

δ2δ4

{
1 +

ψ2

δ2
+
ψ3

δ3

}
+

4ψ2

δ2δ23
+

1

δ2δ4
− 1

δ23

]
p+

4

δ2δ4
.

Through some calculations we observe that all solutions ofG′(p) = 0 out of the interval
[0, 2]. A calculation showed that the maximum value occurs out of the interval which
contradicts our assumption of having the maximum value at the interior point of p ∈
[0, 2]. Thus any maximum point of G must be on the boundary of p ∈ [0, 2].
It is obvious that G(0) > G(2). Hence G attains maximum value at p = 0. Therefore
the upper bound for (10) corresponds to µ = 1 and p = 0. Hence from (10) we obtain
(4).

�

Setting j = 1, k = 1 in Theorem 4, we obtain the following result due to Janteng et
al. [4].

Corollary 3.2. If f(z) ∈ S∗, then

|a2a4 − a23| ≤ 1.

Setting j = 1, k = 2 in Theorem 4, we obtain the following result due to Janteng et
al. [8].

Corollary 3.3. If f(z) ∈ S∗s , then

|a2a4 − a23| ≤ 1.

By using the similar method as in the proof of Theorem 4, one can similarly prove
Theorem 3.4.

Theorem 3.4. Let f ∈ Kj,k, then

|a2a4 − a23| ≤
4

9δ23
.(14)

Where δn = n− ψn and ψn defined by (3).

Setting j = 1, k = 1 in Theorem 3.4, we obtain the following result due to Janteng
et al. [4].
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Corollary 3.5. If f(z) ∈ K, then

|a2a4 − a23| ≤
1

9

Setting j = 1, k = 2 in Theorem 3.4, we obtain the following result due to Janteng
et al. [8].

Corollary 3.6. If f(z) ∈ Ks, then

|a2a4 − a23| ≤
1

9
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