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NUMERICAL SOLUTION OF FUZZY VOLTERRA INTEGRAL EQUATION
OF THE FIRST KIND
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Abstract. In this paper, we use parametric form of fuzzy number and convert a fuzzy
Volterra integral equation of the first kind with regular, as well as weakly singular k-
ernels to a system of integral equations in crisp case. This paper presents a method
based on polynomial approximation using polynomial basis to obtain approximate nu-
merical solution of this system and hence obtain an approximation for fuzzy solution of
the fuzzy Volterra integral equation of the first kind. This method using simple com-
putation with quite acceptable approximate solution. However, accuracy and efficiency
are dependent on the size of the set of Bernstein polynomials. Furthermore we get an
estimation of error bound for this method.
Key words and phrases. Fuzzy integral equations; System of Volterra integral equation
of the first kind with singular kernel; Bernstein polynomial.

1. Introduction

The solutions of integral equations have a major role in the field of science and
engineering. A physical even can be modelled by the differential equation, an integral
equation. Since few of these equations cannot be solved explicitly, it is often necessary
to resort to numerical techniques which are appropriate combinations of numerical
integration and interpolation [3, 15]. There are several numerical methods for solv-
ing linear Volterra integral equation [6, 21] and system of nonlinear Volterra inte-
gral equations [4]. Kauthen in [13] used a collocation method to solve the Volterra-
Fredholm integral equation numerically. Maleknejad and et al. in [17] obtained a
numerical solution of Volterra integral equations by using Bernstein Polynomials.

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced
by Zadeh [23], Dubois and Prade [8]. We refer the reader to [11] for more information
on fuzzy numbers and fuzzy arithmetic. The topics of fuzzy integral equations (FIE)
which growing interest for some time, in particular in relation to fuzzy control, have
been rapidly developed in recent years. The fuzzy mapping function was introduced
by Chang and Zadeh [5]. Later, Dubois and Prade [9] presented an elementary fuzzy
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calculus based on the extension principle also the concept of integration of fuzzy func-
tions was first introduced by Dubois and Prade [9]. Babolian et al., Abbasbandy et al.
in [2, 1] obtained a numerical solution of linear Fredholm fuzzy integral equations of
the second kind.

In this paper, we present a novel and very simple numerical method based upon
Bernstein’s approximation for solving fuzzy Vlterra integral equation of the first kind
with singular kernel.

2. Preliminaries

In this section the basic notations used in fuzzy calculus and Bernstein polynomials
are introduced. We start by defining the fuzzy number.
Definition 1. [14] A fuzzy number is a fuzzy set u : R1 −→ I = [0, 1] such that

i. u is upper semi-continuous;
ii. u(x) = 0 outside some interval [a, d];
iii. There are real numbers b and c, a ≤ b ≤ c ≤ d, for which

1. u(x) is monotonically increasing on [a, b],
2. u(x) is monotonically decreasing on [c, d],
3. u(x) = 1, b ≤ x ≤ c.

The set of all the fuzzy numbers (as given in definition 1) is denoted by E1.
An alternative definition which yields the same E1 is given by Kaleva [12, 16].

Definition 2. A fuzzy number u is a pair (u, u) of functions u(r) and u(r), 0 ≤ r ≤ 1,
which satisfy the following requirements:

i. u(r) is a bounded monotonically increasing, left continuous function on (0, 1] and
right continuous at 0;

ii. u(r) is a bounded monotonically decreasing, left continuous function on (0, 1] and
right continuous at 0;

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.
A crisp number r is simply represented by u(α) = u(α) = r, 0 ≤ α ≤ 1. The set of all

the fuzzy numbers is denoted by E1.
For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R we define addition and

multiplication by k as

(u+ v)(r) = (u(r) + v(r)),

(u+ v)(r) = (u(r) + v(r)),

ku(r) = ku(r), ku(r) = ku(r), if k ≥ 0,

ku(r) = ku(r), ku(r) = ku(r), if k < 0.
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Remark 1. [1] Let u = (u(r), u(r)), 0 ≤ r ≤ 1 be a fuzzy number, we take

uc(r) =
u(r) + u(r)

2
,

ud(r) =
u(r)− u(r)

2
.

It is clear that ud(r) ≥ 0, u(r) = uc(r) − ud(r) and u(r) = uc(r) + ud(r), also a fuzzy
number u ∈ E1 is said symmetric if uc(r) is independent of r for all 0 ≤ r ≤ 1.

Remark 2. Let u = (u(r), u(r)), v = (v(r), v(r)) and also k, s are arbitrary real numbers.
If w = ku+ sv then

wc(r) = kuc(r) + svc(r),

wd(r) = |k|ud(r) + |s|vd(r).
Definition 3. [10] For arbitrary fuzzy numbers u, v, we use the distance

D(u, v) = sup0≤r≤1max{|u(r)− v(r)|, |u(r)− v(r)|}

and it is shown that (E1, D) is a complete metric space [20].
The Bernstein’s approximation, Bn(f) to a real function f : [0, 1] −→ R is the poly-

nomial

(1) Bn(f(x)) =
n∑

i=0

f(
i

n
)Pn,i(x),

where

Pn,i(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, ..., n.

There are n+1 nth-degree polynomials. For convenience, we set Pn,i(x) = 0, if i < 0 or
i > n. It can be readily shown that each of the Bernstein polynomials is positive.

Theorem 1. For all functions f in C[0, 1], the sequence Bn(f);n = 1, 2, 3, ... converges
uniformly to f , where Bn is defined by Eq. (1).
Proof. See [19]. 2

This theorem follows that, for any f ∈ C[0, 1] and for any ϵ > 0, there exists n such
that the inequality ∥Bn(f)− f∥ < ϵ, holds.

We suppose ∥.∥ be the max norm on [0, 1], then the error bound

(2) |Bn(f(x))− f(x)| ≤ 1

2n
x(1− x)∥f ′′∥,

given in [7], shows that the rate of convergence is at least 1
n

for f ∈ C[0, 1]. On the
other hand, the asymptotic formula

(3) limn−→∞n(Bn(f(x))− f(x)) =
1

2
x(1− x)f ′′(x),
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due to Voronovskaya [22] shows that for x ∈ (0, 1) with f ′ ̸= 0, the rate of convergence
is precisely 1

n
.

3. Fuzzy Volterra integral equation of the first kind

The Fuzzy Volterra integral equations of the first kind (FVIE-1) is [18]

(4) λ

∫ x

0

k(x, t)F (t)dt = G(x), 0 ≤ x ≤ 1.

where λ > 0, k(x, t) is a kernel function and G(x) is a fuzzy function. If G(x) is a fuzzy
function these equation may only possess fuzzy solution. Sufficient conditions for the
existence of a unique solution to the fuzzy Volterra integral equation are given in [18].

Now, we introduce parametric form of a FVIE-1 with respect to Definition 2. Let
(G(x; r), G(x; r)) and (F (t; r), F (t; r)), 0 ≤ r ≤ 1 are parametric form of G(x) and F (t),
respectively then, parametric form of FVIE-1 is as follows:

(5) λ

∫ x

0

k(x, t)F (t; r)dt = G(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

(6) λ

∫ x

0

k(x, t)F (t; r)dt = G(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

Suppose k(x, t) be continuous on the square [0, 1]2 and for fix t, k(x, t) changes its sign
in finite points as xj where xj ∈ [0, x]. For example, let k(x, t) be nonnegative over [0, x1]

and negative over [x1, x], therefore from Eqs. (5) and (6), we have

λ
∫ x1

0
k(x, t)F (t; r)dt+ λ

∫ x

x1
k(x, t)F (t; r)dt = G(x; r),

0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

λ
∫ x1

0
k(x, t)F (t; r)dt+ λ

∫ x

x1
k(x, t)F (t; r)dt = G(x; r),

0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

By referring to Remark 2 we have

(7) λ
∫ x

0
k(x, t)F c(t; r)dt = Gc(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

(8) λ
∫ x

0
|k(x, t)|F d(t; r)dt = Gd(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

It is clear that we must solve two crisp Volterra integral equation of the first kind
provided that each of Eqs. (7) and (8) have solution.
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4. Discretization of integral equations VK1 by using Bernstein’s approximation

We consider the Volterra integral equations of the first kind given by,

λ

∫ x

0

k(x, t)F c(t; r)dt = Gc(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

λ

∫ x

0

|k(x, t)|F d(t; r)dt = Gd(x; r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

where F c(t; r) and F d(t; r) are the unknown crisp function to be determined, k(x, t) is a
continuous function on the square [0, 1]2 and integrable function, Gc(x; r) and Gd(x; r)

being the known crisp functions.
To determine an approximate the unknown function of Eq. (4), we approximate with

Bernstein’s approximation

(9) λ

∫ x

0

k(x, t)Bn(F (t))dt = G(x), 0 ≤ x ≤ 1,

therefore, we approximate the unknown functions F c(t; r) and F d(t; r) by

(10) Bn(F
c(t; r)) =

n∑
i=0

F c(
i

n
; r)Pn,i(t),

and

(11) Bn(F
d(t; r)) =

n∑
i=0

F d(
i

n
; r)Pn,i(t),

where

Pn,i(t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, ..., n.

Let (Bn(F (t; r)), Bn(F (t; r))), 0 ≤ r ≤ 1 is a parametric form of Bn(F (t)), then we have:

Bn(F (t; r)) =
n∑

i=0

F (
i

n
; r)Pn,i(t), 0 ≤ r ≤ 1,

Bn(F (t; r)) =
n∑

i=0

F (
i

n
; r)Pn,i(t), 0 ≤ r ≤ 1.

By referring to Remark 2, we have the following equations

(12)
λ
∫ x

0
k(x, t)(

∑n
i=0

(
n

i

)
F c( i

n
; r)ti(1− t)n−i)dt = Gc(x; r),

0 ≤ r ≤ 1,

(13)
λ
∫ x

0
|k(x, t)|(

∑n
i=0

(
n

i

)
F d( i

n
; r)ti(1− t)n−i)dt = Gd(x; r),

0 ≤ r ≤ 1.
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In order to find F c( i
n
; r) and F d( i

n
; r) for i = 0, 1, ..., n, we now put x = xj, j = 0, 1, ..., n

in (12) and (13), xj
,s being chosen as suitable distinct points in (0, 1), and x0 is taken

near 0 and xn near 1 such that 0 < x0 < x1 < ... < xn < 1. Putting x = xj we obtain in
short form two linear systems

(14) A1X1 = Y1,

where

A1 = [λ

(
n

i

)∫ xj

0
k(xj, t)t

i(1− t)n−idt],

i, j = 0, 1, ..., n,

X1 = [F c( i
n
; r)]t, 0 ≤ r ≤ 1, i = 0, 1, ..., n,

Y1 = [Gc(xj; r)]
t, 0 ≤ r ≤ 1, j = 0, 1, ..., n,

and also

(15) A2X2 = Y2,

where

A2 = [λ

(
n

i

)∫ xj

0
|k(xj, t)|ti(1− t)n−idt],

i, j = 0, 1, ..., n,

X2 = [F d( i
n
; r)]t, 0 ≤ r ≤ 1, i = 0, 1, ..., n,

Y2 = [Gd(xj; r)]
t, 0 ≤ r ≤ 1, j = 0, 1, ..., n.

In general we cannot be able to carry out analytically the integrations, involved. We
compute the integral that exist in A1

,s formula and A2
,s formula numerically. Now

we can show F c( i
n
; r) and F d( i

n
; r) by F c

n(
i
n
; r) and F d

n(
i
n
; r), i = 0, 1, ..., n, respectively

that are our solutions in nodes xj, j = 0, 1, ..., n and by substituting them in Eqs. (10)
and (11) we can find Bn(F

c
n(xj; r)) and Bn(F

d
n(xj; r))j = 0, 1, ..., n that are solution for

integral equations (7) and (8).
We give error bound for this solution in the following theorem.

Theorem 2. Consider the crisp Volterra integral equations of the first kind (7) and (8).
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Assume that k(x, t) is continuous on the square [0, 1]2 and the solution of the equations
belong to (Cα ∩ L2)([0, 1]) for some α > 2. If A1 and A2 invertible then

supxi∈[0,1]D(F (xi), Bn(Fn(xi))) ≤

supr∈[0,1][
1
8n
(M∥A−1

1 ∥∥F ′′c(r)∥+ ∥F ′′c
n (r)∥)+

1
8n
(M∥A−1

2 ∥∥F ′′d(r)∥+ ∥F ′′d
n (r)∥)],

where xi = i
n
, i = 0, 1, ..., n, F (x) is exact solution of FVIE-1 and M = supx,t∈[0,1] |

λk(x, t) |.

Proof. We have

(16)
supxi∈[0,1]|F †(xi; r)−Bn(F

†
n(xi; r))| =

supxi∈[0,1]|F †(xi; r)− F †
n(xi; r) + F †

n(xi; r)−Bn(F
†
n(xi; r))| ≤

supxi∈[0,1]|F †(xi; r)− F †
n(xi; r)|+ supxi∈[0,1]|F †

n(xi; r)−Bn(F
†
n(xi; r))|,

where † means we have this equation for c and d together, independently. From rela-
tion (2) we have the following bound

(17) supx∈[0,1]|F †
n(x; r)−Bn(F

†
n(x; r))| ≤

1

2n
x(1− x)∥F †

n∥ ≤ 1

8n
∥F †

n∥,

then it is enough to find a bound for supxi∈[0,1]|F †(xi; r) − F †
n(xi; r)|. For numerically

solving integral equations (7) and (8) by using Bernstein’s approximation, because
from Theorem 1 we know that for any F † ∈ C[0, 1] and for any ϵ > 0, there exists n

such that the inequality ∥Bn(F
†) − F †∥ < ϵ, holds so we can write integral equations

(7) and (8) as

Gc(x; r) = λ

∫ x

0

k(x, t)Bn(F
c(t; r))dt, 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

and
Gd(x; r) = λ

∫ x

0

|k(x, t)|Bn(F
d(t; r))dt, 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

If we substitute F †
n(x; r) instead of F †(x; r) in above equations then the right-hand

side of integral equation is exchanged by a new function that we denote it by Ĝ†(x; r).
So we have,

Ĝc(x; r) = λ

∫ x

0

k(x, t)Bn(F
c
n(t; r))dt, 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

and
Ĝd(x; r) = λ

∫ x

0

|k(x, t)|Bn(F
d
n(t; r))dt, 0 ≤ x ≤ 1, 0 ≤ r ≤ 1.
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Consequently we have

(18) supxi∈[0,1]|F c(xi; r)− F c
n(xi; r)| ≤ ∥A−1

1 ∥max|Gc(xi; r)− Ĝc(xi; r)|,
i = 0, 1, ..., n,

and

(19) supxi∈[0,1]|F d(xi; r)− F d
n(xi; r)| ≤ ∥A−1

2 ∥max|Gd(xi; r)− Ĝd(xi; r)|,
i = 0, 1, ..., n,

where xi =
i
n
, i = 0, 1, ..., n. For finding a bound for

max|G†(xi; r)− Ĝ†(xi; r)|,

we let
Gc(x; r) = λ

∫ x

0

k(x, t)F c(t; r))dt,

Gd(x; r) = λ

∫ x

0

|k(x, t)|F d(t; r))dt,

and
Ĝc(x; r) = λ

∫ x

0

k(x, t)Bn(F
c(t; r))dt,

Ĝd(x; r) = λ

∫ x

0

|k(x, t)|Bn(F
d(t; r))dt.

So that∫ x

0
λk(x, t)(F c(t; r)−Bn(F

c(t; r)))dt+
∫ x

0
λk(x, t)Bn(F

c(t; r))dt = Gc(x; r),

and ∫ x

0
λ|k(x, t)|(F d(t; r)−Bn(F

d(t; r)))dt+
∫ x

0
λ|k(x, t)|Bn(F

d(t; r))dt = Gd(x; r),

then
supx∈[0,1]|Gc(x; r)− Ĝc(x; r)| = supx∈[0,1]|

∫ x

0
λk(x, t)(F c(t; r)−Bn(F

c(t; r)))dt|
≤ supx∈[0,1](|λk(x, t)||(F c(t; r)−Bn(F

c(t; r)))|)

and
supx∈[0,1]|Gd(x; r)− Ĝd(x; r)| = supx∈[0,1]|

∫ x

0
λ|k(x, t)|(F d(t; r)−Bn(F

d(t; r)))dt|
≤ supx∈[0,1](|λk(x, t)||(F d(t; r)−Bn(F

d(t; r)))|)

if we let supx,t∈[0,1]|λk(x, t)| = M , then we have

maxxi∈[0,1]|G†(xi; r)− Ĝ†(xi; r)| ≤ 1
8n
M∥F ′′d∥,

so by substituting this bound in the inequality (18) and (19) we have,

(20) supxi∈[0,1]|F c(xi; r)− F c
n(xi; r)| ≤

1

8n
M∥A−1

1 ∥∥F ′′c∥,
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and

(21) supxi∈[0,1]|F d(xi; r)− F d
n(xi; r)| ≤

1

8n
M∥A−1

2 ∥∥F ′′d∥,

then from relations (16), (17),(20) and (21) we have

(22) supxi∈[0,1]|F c(xi; r)−Bn(F
c
n(xi; r))| ≤ 1

8n
(M∥A−1

1 ∥∥F ′′c∥+ ∥F ′′c
n ∥),

and

(23) supxi∈[0,1]|F d(xi; r)−Bn(F
d
n(xi; r))| ≤ 1

8n
(M∥A−1

2 ∥∥F ′′d∥+ ∥F ′′d
n ∥),

therefore by (22), (23) and Remark 1 we have

supxi∈[0,1]|F (xi; r)−Bn(Fn(xi; r))| ≤ 1
8n
(M∥A−1

1 ∥∥F ′′c∥+

∥F ′′c
n ∥) + 1

8n
(M∥A−1

2 ∥∥F ′′d∥+ ∥F ′′d
n ∥),

supxi∈[0,1]|F (xi; r)−Bn(Fn(xi; r))| ≤ 1
8n
(M∥A−1

1 ∥∥F ′′c∥+

∥F ′′c
n ∥) + 1

8n
(M∥A−1

2 ∥∥F ′′d∥+ ∥F ′′d
n ∥),

hence for all r ∈ [0, 1]

max{supxi∈[0,1][|F (xi; r)−Bn(Fn(xi; r))|, |F (xi; r)−Bn(Fn(xi; r))|]}

≤ 1
8n
(M∥A−1

1 ∥∥F ′′c∥+ ∥F ′′c
n ∥) + 1

8n
(M∥A−1

2 ∥∥F ′′d∥+ ∥F ′′d
n ∥),

and then
supxi∈[0,1]D(F (xi), Bn(Fn(xi))) ≤

supr∈[0,1][
1
8n
(M∥A−1

1 ∥∥F ′′c(r)∥+ ∥F ′′c
n (r)∥)+

1
8n
(M∥A−1

2 ∥∥F ′′d(r)∥+ ∥F ′′d
n (r)∥)],

and the proof is completed. �

5. Numerical examples

To illustrate the technique proposed in this paper, consider the following examples.

Example 5.1. We consider first kind fuzzy Volterra integral equation with a regu-
lar kernel given by,

λ

∫ x

0

k(x, t)F (t)dt = G(x), 0 ≤ x ≤ 1,
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where λ = 1, k(x, t) = 1

(x2+t2)
1
2

and G(x) = (G(x; r), G(x; r)) = (rx, (2 − r)x), 0 ≤ r ≤

1. The exact solution in this case is given by F (x) = (F (x; r), F (x; r)) = (r x

2
1
2−1

, (2 −
r) x

2
1
2−1

), 0 ≤ r ≤ 1. We can see that

Gc(x; r) = x, Gd(x; r) = x− rx, 0 ≤ r ≤ 1.

According to Eqs. (7) and (8) we have the following two crisp Volterra integral equa-
tions

(24)
∫ x

0
1

(x2+t2)
1
2
F c(t; r)dt = x, 0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

(25)
∫ x

0
1

(x2+t2)
1
2
F d(t; r)dt = x(1− r), 0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

Now we approximate the unknown functions F c(x; r) and F d(x; r) by
Bn(F

c(x; r)) and Bn(F
d(x; r)) for n = 1, 2, 3.

We choose x0 = 10−10 and x1 = 1−x0. For this example, we use r = 0, 0.1, . . . , 1, where
we calculate the error of the exact solution and obtained solution of fuzzy Volterra in-
tegral equation with Bernstein approximation. Table 1 show the convergence behavior
for n = 1. The exact and obtained solution of fuzzy Volterra integral equation in this
example at x = 0.5 for n = 1 is shown in Figure 1.

Example 5.2. We consider the fuzzy Abel integral equation with weak singularity
given by,

λ

∫ x

0

k(x, t)F (t)dt = G(x), 0 ≤ x ≤ 1

where λ = 1 , k(x, t) = 1√
x−t

and G(x) = (G(x; r), G(x; r)) = (x5(r2 + r), x5(4 − r3 −
r)), 0 ≤ r ≤ 1. The exact solution in this case is given by F (x) = (F (x; r), F (x; r)) =

(( 1280
315π

x
9
2 )(r2 + r), ( 1280

315π
x

9
2 )(4− r3 − r)), 0 ≤ r ≤ 1. We can see that

Gc(x; r) = x5(4+r2−r3)
2

, Gd(x; r) = (x5)(4−r3−r2−2r)
2

, 0 ≤ r ≤ 1.

According to Eqs. (7) and (8) we have the following two crisp Volterra integral equa-
tions

(26)
∫ x

0
sinh(x)F c(t; r)dt = x5(4+r2−r3)

2
,

0 ≤ x ≤ 1, 0 ≤ r ≤ 1,

(27)
∫ x

0
sinh(x)F d(t; r)dt = (x5)(4−r3−r2−2r)

2
,

0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

Now we approximate the unknown functions F c(x; r) and F d(x; r) by
Bn(F

c(x; r)) and Bn(F
d(x; r)) for n = 1, 2, 3.
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We choose x0 = 10−10, xj = j
n
, j = 1, ..., n − 1 and xn = 1 − x0 for n = 1, 2, 3. For

this example, we use r = 0, 0.1, . . . , 1, where we calculate the error of the exact solution
and obtained solution of fuzzy Abel integral equation with Bernstein approximation.
Table 1 show the convergence behavior for n = 1, 2, 3. The exact and obtained solution
of fuzzy Volterra integral equation in this example at x = 0.5 for n = 1, 2, 3, are shown
in Figure 2.

6. Summary and conclusions

Here a very simple and straight method, based on approximation of the fuzzy un-
known function of an fuzzy Volterra integral equation on the Bernstein polynomial
basis is used. Our achieve results in this paper, show that Bernstein’s approximation
method for solving fuzzy Volterra integral equations of first kind even with singulari-
ty, is very effective and the answers are trusty and their accuracy are high and we can
execute this method in a computer simply.
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Figure 1. Compares the exact solution and obtained solutions of Bernstein
approximation at x = 0.5.
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Figure 2. Compares the exact solution and obtained solutions of Bernstein
approximation at x = 0.5.
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n Example 5.1 Example 5.2
1 2.0601E-10 0.63567
2 0.12289
3 0.022849

Table 1. Computed error for Examples 5.1− 5.2.
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