EXPANDING THE APPLICABILITY TIKHONOV'S REGULARIZATION FOR NONLINEAR ILL-POSED PROBLEMS

IOANNIS K. ARGYROS¹, SANTHOSH GEORGE²

¹Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA ²Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, India-757 025

ABSTRACT. In [7] the authors presented a cubically convergent Two Step Newton Tikhonov Method (TSNTM) to approximate a solution of an ill-posed equation. In the present paper we show how to expand the applicability of (TSNTM). In particular, we present a semilocal convergence analysis of (TSNTM) under: weaker hypotheses, weaker convergence criteria, tighter error estimates on the distances involved and at least as precise information on the location of the solution.

2010 Mathematics Subject Classification. 65J20; 65J15; 47J36.

Key words and phrases. Newton Tihkonov regularization method, ill-posed problem, Hilbert space, semilocal convergence.

1. INTRODUCTION

In this study we consider the task of approximately solving the nonlinear ill-posed operator equation

$$F(x) = f$$

where $F: D(F) \subseteq X \to Y$ is a nonlinear operator between the Hilbert spaces X and Y. Let $B_r(x)$ and $\overline{B_r(x)}$, stand respectively, for the open and closed ball in X with center x and radius r > 0. Let $\langle ., . \rangle$ denote the inner product and $\|.\|$ denote the corresponding norm. It is assumed that (1.1) has a solution, namely \hat{x} , i.e., $F(\hat{x}) = f$. We assume throughout that $f^{\delta} \in Y$ are the available data such that $\|f - f^{\delta}\| \leq \delta$. Hence the problem of computing of \hat{x} from equation $F(x) = f^{\delta}$ is ill-posed (irregular) problem. In such a case, it is necessary either to pass to regularized analogues of these methods on the basis of the iterative regularization principle ([1], [12], [16], [8], [9], [11], [14], [18], [19], [10], [22]-[27]) or to apply these iterative processes to the regularized equation([15], [16], [29])

(1.2)
$$S_{\alpha}(x) := F'(x)^*(F(x) - f^{\delta}) + \alpha(x - x_0) = 0$$

 $\odot 2014$ Mathematical Inverse Problems

for some fixed and appropriately chosen regularization parameter α and initial guess x_0 (see [29]). It is known that the solution u_{α}^{δ} of the equation (1.2) is an approximation of \hat{x} provided $\alpha > 0$ is chosen properly (see [28]).

Observe that the operator $S_{\alpha}(x)$ in (1.2) is the gradient of the Tikhonov ([17], [13], [29]) functional

$$\Phi(x) = \frac{1}{2} \|F(x) - f^{\delta}\|^2 + \alpha \|x - x_0\|^2$$

In [29], Vasin considered the iterative method

(1.3)
$$u_{\alpha}^{k+1} = u_{\alpha}^{k} - [F'(u_{\alpha}^{k})^{*}F'(u_{\alpha}^{k}) + \bar{\alpha}I]^{-1}S_{\alpha}(u_{\alpha}^{k})$$

and its modified variant in the form

(1.4)
$$u_{\alpha}^{k+1} = u_{\alpha}^{k} - [F'(u_{\alpha}^{0})^{*}F'(u_{\alpha}^{0}) + \bar{\alpha}I]^{-1}S_{\alpha}(u_{\alpha}^{k})$$

with $\bar{\alpha} > \alpha$ for approximation of the solution u_{α}^{δ} of the equation (1.2). The results in [29], was proved using the following conditions

(1.5)
$$||F'(x)|| \le N_1, ||F'(x) - F'(y)|| \le N_2 ||x - y||$$

where $N_1 > 0$, $N_2 > 0$ are constants. Recently, in [30], Vasin and George considered a modified variant of (1.4), i.e., the iteration

(1.6)
$$u_{\alpha}^{k+1} = u_{\alpha}^{k} - [A^{*}A + \beta I]^{-1} [A^{*}(F(u_{\alpha}^{k}) - y^{\delta}) + \alpha (u_{\alpha}^{k} - u_{0})], \quad u_{\alpha}^{0} = u_{0},$$

where $A := F'(u_0)$, $\alpha > 0$ is the regularization parameter and β is a constant. In [30], instead of Lipschitz condition (1.5), the following center Lipschitz condition is used.

ASSUMPTION 1.1. Suppose there exists constants $L_0 > 0$ such that for all $x \in B(x_0, r) \subseteq D(F)$ and $w \in X$, there exists elements $\varphi(x, x_0, w) \in X$ such that

$$[F'(x) - F'(x_0)]w = F'(x_0)\varphi(x, x_0, w), \ \|\varphi(x, x_0, w)\| \le L_0 \|x - x_0\| \|w\|.$$

In [7], the authors considered the following Two Step Newton Tikhonov Method(TSNTM) defined by:

(1.7)
$$y_{n,\alpha}^{\delta} = x_{n,\alpha}^{\delta} - R_{\alpha}(x_{n,\alpha}^{\delta})^{-1} [A_0^*(F(x_{n,\alpha}^{\delta}) - y^{\delta}) + \alpha(u_{n,\alpha}^{\delta} - x_0)]$$

and

(1.8)
$$x_{n+1,\alpha}^{\delta} = y_{n,\alpha}^{\delta} - R_{\alpha} (x_{n,\alpha}^{\delta})^{-1} [A_0^* (F(y_{n,\alpha}^{\delta}) - y^{\delta}) + \alpha (y_{n,\alpha}^{\delta} - x_0)],$$

where $x_{0,\alpha}^{\delta} = x_0$, $R_{\alpha}(x) := (A_0^*A_x + \alpha I)$, $A_x := F'(x)$, $A_0 = F'(x_0)$ and $\alpha > 0$ is the regularization parameter and proved that $x_{n,\alpha}^{\delta}$ converges cubically to the solution x_{α}^{δ} of

(1.9)
$$A_0^* F(x_{\alpha}^{\delta}) + \alpha (x_{\alpha}^{\delta} - x_0) = A_0^* y^{\delta}$$

and that x_{α}^{δ} is an approximation of \hat{x} ..

The semilocal convergence analysis was based on the following conditions which has been used extensively in the study of iterative procedures for solving ill-posed problems [31], [33], [36].

(C1) There exists a constant L > 0 such that for each $x, u \in D(F)$ and $v \in X$, there exists an element $P(x, u, v) \in X$ satisfying

$$[F'(x) - F'(u)]v = F'(u)P(x, u, v), \quad ||P(x, u, v)|| \le L||v|| ||x - u||$$

In the present paper, we extend the convergence domain of (TSNTM) under weaker sufficient semilocal convergence criteria. Moreover, the upper bounds on the distances $||x_{n+1,\alpha}^{\delta} - x_{n,\alpha}^{\delta}||$, $||x_{n,\alpha}^{\delta} - x_{\alpha}^{\delta}||$ are tighter and the information on the location of the solution x_{α}^{δ} at least as precise (see Section 3).

There are cases when Lipschitz-type condition (C1) is violated (see Section 4) but the weaker central-Lipschitz condition in Assumption 1.1 is satisfied. Note that $L_0 \leq L$ hold in general and $\frac{L}{L_0}$ can be arbitrarily large [1]-[6].

In section 2 we provide a semilocal convergence analysis for (TSNTM) using Assumption 1.1 instead of (C1). We shall refer to [30], [16] for some of the proofs omitted in this study.

2. Semilocal convergence of (TSNTM)

In this section we present the semilocal convergence of (TSNTM) using Assumption 1.1. In due course we shall make use of the following lemma extensively.

LEMMA 2.1. Let $L_0r < 1$ and $u \in B_r(x_0)$. Then $(A_0^*A_u + \alpha I)$ is invertible:

(i)

$$(A_0^*A_u + \alpha I)^{-1} = [I + (A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)]^{-1}(A_0^*A_0 + \alpha I)^{-1}$$

and

(ii)

$$\|(A_0^*A_u + \alpha I)^{-1}A_0^*A_0\| \le \frac{1}{1 - L_0 r},$$

where $A_u := F'(u)$.

Proof. Note that by Assumption 1.1, we have

$$\begin{aligned} \|(A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)\| &= \sup_{\|v\| \le 1} \|(A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)v\| \\ &= \sup_{\|v\| \le 1} \|(A_0^*A_0 + \alpha I)^{-1}A_0^*A_0\Phi(u, x_0, v)\| \\ &\le L_0\|u - x_0\| \le L_0r < 1. \end{aligned}$$

So $I + (A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)$ is invertible. Now (i) follows from the following relation

$$A_0^*A_u + \alpha I = (A_0^*A_0 + \alpha I)[I + (A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)].$$

To prove (ii), observe that by Assumption 1.1, we have

$$\begin{aligned} \|(A_0^*A_u + \alpha I)^{-1}A_0^*A_0\| &= \sup_{\|v\| \le 1} \|(A_0^*A_u + \alpha I)^{-1}A_0^*A_0v\| \\ &= \sup_{\|v\| \le 1} \|[I + (A_0^*A_0 + \alpha I)^{-1}A_0^*(A_u - A_0)]^{-1} \\ &\quad (A_0^*A_0 + \alpha I)^{-1}A_0^*A_0v\| \\ &\le \frac{1}{1 - L_0r} \|(A_0^*A_0 + \alpha I)^{-1}A_0^*A_0v\|] \\ &\le \frac{1}{1 - L_0r}. \end{aligned}$$

This completes the proof.

We need to introduce some sequences and parameters:

(2.1)
$$e_{n,\alpha}^{\delta} := \|y_{n,\alpha}^{\delta} - x_{n,\alpha}^{\delta}\|, \qquad \forall n = 0, 1, \cdots,$$

for $\delta_0 < (17 - 12\sqrt{2})\sqrt{\alpha_0}$ for some $\alpha_0 > 0$ and $||x_0 - \hat{x}|| \le \rho$,

(2.2)
$$\rho \leq \frac{\sqrt{1 + 2L_0(17 - 12\sqrt{2} - \frac{\delta_0}{\sqrt{\alpha_0}})} - 1}{L_0} = \rho_0.$$

Let

(2.3)
$$b_{\rho} = \frac{L_0}{2}\rho^2 + \rho + \frac{\delta_0}{\sqrt{\alpha_0}},$$

(2.4)
$$r = \frac{1}{L_0} \frac{2b_{\rho}}{1 - b_{\rho} + \sqrt{(1 - b_{\rho})^2 - 32b_{\rho}}},$$

(2.5)
$$\gamma_{\rho} = \frac{1}{1 - L_0 r} \left[\frac{L_0}{2} \rho^2 + \rho + \frac{\delta_0}{\sqrt{\alpha_0}} \right],$$

and

(2.6)
$$p = 2L_0 r, q = 2p^2.$$

Note that r is well defined, since $\frac{p}{2} < 1, q \in (0, 1)$ and $b_{\rho} \in (0, 17 - 12\sqrt{2}]$. Also note that $r > \frac{1}{2\sqrt{2}L_0}$ and hence $8L_0^3r^3 > L_0r$, so we have

$$(2.7) \qquad \qquad \frac{1+L_0r}{1-8L_0^2r^2}\gamma_{\rho} = \frac{1+L_0r}{(1-8L_0^2r^2)(1-L_0r)}b_{\rho} \\ = \frac{1+L_0r}{1-8L_0^2r^2+(8L_0^3r^3-L_0r)}b_{\rho} \\ \leq \frac{1+L_0r}{1-8L_0^2r^2}b_{\rho} = \frac{1+\frac{p}{2}}{1-q}b_{\rho} = L_0r$$

In order for us to simplify the notation, let x_n, y_n and e_n , stand, respectively for $x_{n,\alpha}^{\delta}, y_{n,\alpha}^{\delta}$ and $e_{n,\alpha}^{\delta}$. If we simply use the needed Assumption 1.1 instead of (C1) we arrive at:

LEMMA 2.2. Suppose that Assumption 1.1 holds and γ_{ρ} is given by (2.5). Then, the following assertion holds

 $e_0 \le \gamma_\rho$

Proof. Using (2.1), (2.2), (2.3) and (C1)'' we obtain in turn that

$$e_{0} = \|y_{0} - x_{0}\| = \|R_{\alpha}(x_{0})^{-1}A_{0}^{*}(F(x_{0}) - f^{\delta})\|$$

$$= \|R_{\alpha}(x_{0})^{-1}A_{0}^{*}[F(x_{0}) - F(\hat{x}) - F'(x_{0})(x_{0} - \hat{x}) + F'(x_{0})(x_{0} - \hat{x}) + F'(x_{0})(x_{0} - \hat{x}) + F(\hat{x}) - f^{\delta}]\|$$

$$= \|R_{\alpha}(x_{0})^{-1}A_{0}^{*}[\int_{0}^{1} (F'(x_{0} + t(\hat{x} - x_{0})) - F'(x_{0}))dt(x_{0} - \hat{x}) + F'(x_{0})(x_{0} - \hat{x}) + F(\hat{x}) - f^{\delta}]\|$$

$$\leq \frac{1}{1 - L_{0}r}[\|\int_{0}^{1} \Phi(x_{0} + t(\hat{x} - x_{0}), x_{0}, x_{0} - \hat{x})\| + \|x_{0} - \hat{x}\| + \|R_{\alpha}(x_{0})^{-1}A_{0}^{*}(F(\hat{x}) - f^{\delta})\|]$$

$$\leq \frac{1}{1 - L_{0}r}[\frac{L_{0}}{2}\|x_{0} - \hat{x}\|^{2} + \|x_{0} - \hat{x}\| + \frac{1}{\alpha}\|F(\hat{x}) - f^{\delta}\|]$$

$$\leq \frac{1}{1 - L_{0}r}[\frac{L_{0}}{2}\rho^{2} + \rho + \frac{\delta}{\sqrt{\alpha}}]$$

$$\leq \frac{1}{1 - L_{0}r}[\frac{L_{0}}{2}\rho^{2} + \rho + \frac{\delta_{0}}{\sqrt{\alpha_{0}}}] = \gamma_{\rho}.$$

The proof of the Lemma is complete. With the notion introduced so far we can present the semilocal convergence analysis of (TSNTM) using the next three results.

THEOREM 2.3. Suppose that Assumption 1.1 holds and $\delta \in (0, \delta_0]$. Then, the following assertions hold

(a)
$$||x_n - y_n|| \le p ||y_{n-1} - x_{n-1}|| = pe_{n-1},$$

(b) $||x_n - x_{n-1}|| \le (1 + \frac{p}{2})e_{n-1},$
(c) $e_n \le qe_{n-1}.$

Proof. Using (1.7) and (1.8) we get that

$$\begin{aligned} x_n - y_{n-1} &= y_{n-1} - x_{n-1} - R_\alpha(x_{n-1})^{-1} [A_0^*(F(y_{n-1}) - F(x_{n-1})) \\ &+ \alpha(y_{n-1} - x_{n-1})] \\ &= R_\alpha(x_{n-1})^{-1} [R_\alpha(x_{n-1})(y_{n-1} - x_{n-1}) \\ &- A_0^*(F(y_{n-1}) - F(x_{n-1})) - \alpha(y_{n-1} - x_{n-1})] \\ &= R_\alpha(x_{n-1})^{-1} A_0^* \int_0^1 \{F'(x_{n-1}) - F'(x_{n-1} + t(y_{n-1} - x_{n-1}))\} \\ &\times (y_{n-1} - x_{n-1}) dt \\ &= R_\alpha(x_{n-1})^{-1} A_0^* \int_0^1 \{F'(x_{n-1}) - F'(x_0) + F'(x_0) \\ &- F'(x_{n-1} + t(y_{n-1} - x_{n-1}))\} (y_{n-1} - x_{n-1}) dt. \end{aligned}$$

In view of Assumption 1.1 and (2.8) we have that

(2.8)

$$\begin{aligned} \|x_n - y_{n-1}\| &\leq \frac{1}{1 - L_0 r} [\|\int_0^1 \Phi(x_{n-1}, x_0, y_{n-1} - x_{n-1}) dt\| \\ &+ \|\int_0^1 \Phi(x_{n-1} + t(y_{n-1} - x_{n-1}), x_0, x_{n-1} - y_{n-1}) dt\|] \\ &\leq \frac{1}{1 - L_0 r} [L_0[\|x_{n-1} - x_0\| \\ &+ \int_0^1 \|x_{n-1} - x_0 + t(y_{n-1} - x_{n-1})\| dt] \|y_{n-1} - x_{n-1}\|] \\ &\leq \frac{1}{1 - L_0 r} [2L_0 r\|y_{n-1} - x_{n-1}\| \\ &= p\|y_{n-1} - x_{n-1}\|] = pe_{n-1}. \end{aligned}$$

This proves (a). Now (b) follows from (a) and the triangle inequality;

$$||x_n - x_{n-1}|| \le ||x_n - y_{n-1}|| + ||y_{n-1} - x_{n-1}||.$$

To prove (c) we first use (1.7) and (1.8) to obtain in turn the identity

$$y_n - x_n = x_n - y_{n-1} - R_\alpha(x_n)^{-1} [A_0^*(F(x_n) - f^{\delta}) + \alpha(x_n - x_0)] + R_\alpha(x_{n-1})^{-1} [A_0^*(F(y_{n-1}) - f^{\delta}) + \alpha(y_{n-1} - x_0)] = x_n - y_{n-1} - R_\alpha(x_n)^{-1} [A_0^*(F(x_n) - F(y_{n-1}) + \alpha(x_n - y_{n-1})] + [R_\alpha(x_{n-1})^{-1} - R_\alpha(x_n)^{-1}] [A_0^*(F(y_{n-1}) - f^{\delta}) + \alpha(y_{n-1} - x_0)] = R_\alpha(x_n)^{-1} [R_\alpha(x_n)(x_n - y_{n-1}) - A_0^*(F(x_n) - F(y_{n-1})) - \alpha(x_n - y_{n-1})] + [R_\alpha(x_{n-1})^{-1} - R_\alpha(x_n)^{-1}] \times [A_0^*(F(y_{n-1}) - f^{\delta}) + \alpha(y_{n-1} - x_0)].$$

Then, again by Assumption 1.1 and (2.9) we obtain that

$$e_{n} \leq \|R_{\alpha}(x_{n})^{-1}A_{0}^{*}\int_{0}^{1} [F'(x_{n}) - F'(y_{n-1} + t(x_{n} - y_{n-1}))]dt(x_{n} - y_{n-1})\| \\ + \|R_{\alpha}(x_{n})^{-1}(F'(x_{n}) - F'(x_{n-1}))R_{\alpha}(x_{n-1})^{-1}[A_{0}^{*}(F(y_{n-1}) - f^{\delta}) \\ + \alpha(y_{n-1} - x_{0})]\| \\ \leq \|R_{\alpha}(x_{n})^{-1}A_{0}^{*}\int_{0}^{1} [F'(x_{n}) - F'(y_{n-1} + t(x_{n} - y_{n-1}))]dt(x_{n} - y_{n-1})\| \\ + \|R_{\alpha}(x_{n})^{-1}(F'(x_{n}) - F'(x_{n-1}))(y_{n-1} - x_{n})\| \\ \leq \frac{1}{1 - L_{0}r} [L_{0}[\|x_{n} - x_{0}\| + \int_{0}^{1} \|y_{n-1} - x_{0} + t(x_{n} - y_{n-1})\|dt]\|x_{n} - y_{n-1}\|] \\ + L_{0}[\|x_{n} - x_{0}\| + \|x_{n-1} - x_{0}\|]\|x_{n} - y_{n-1}\| \\ \leq \frac{1}{1 - L_{0}r} [4L_{0}r\|y_{n-1} - x_{n}\|] = 4L_{0}r(2L_{0}r)e_{n-1} \\ = qe_{n-1}.$$

This completes the proof of the Theorem.

THEOREM 2.4. Under the hypotheses of Theorem 2.3 further suppose that

(2.10)
$$\rho < \rho_0 \text{ and } L_0 \leq 1.$$

Moreover, suppose that

(2.9)

(2.11)
$$\overline{U(x_0,r)} \subseteq D(F).$$

Then, $x_n, y_n \in U(x_0, r)$ *for each* $n = 0, 1, 2, \cdots$.

Proof. We note by (2.10) that we have

$$(2.12) q \in (0,1).$$

Using Lemma 2.2, Theorem 2.3 and (2.11) we get that

$$||x_1 - x_0|| \le (1 + L_0 r)e_0 \le (1 + L_0 r)b_\rho < r.$$

Hence, $x_1 \in U(x_0, r)$. Similarly, we obtain that

$$(2.13) ||y_1 - x_0|| \leq ||y_1 - x_1|| + ||x_1 - x_0||$$

(2.14)
$$\leq q e_0 + (1 + \frac{r}{2}) b_{\rho}$$

(2.15)
$$\leq [q+1+\frac{p}{2}]b_{\rho} < L_0 r \leq r,$$

which implies $y_1 \in U(x_0, r)$. Moreover, we have that

$$\begin{aligned} \|x_2 - x_0\| &\leq \|x_2 - x_1\| + \|x_1 - x_0\| \\ &\leq (1 + \frac{p}{2})\|y_1 - x_1\| + (1 + \frac{p}{2})b_\rho \\ &\leq (1 + \frac{p}{2})qb_\rho + (1 + \frac{p}{2})b_\rho \\ &= (1 + q)(1 + \frac{p}{2})b_\rho < L_0r \leq r, \end{aligned}$$

which also implies $x_2 \in U(x_0, r)$. Furthermore, we obtain that

$$\begin{aligned} \|y_2 - x_0\| &\leq \|y_2 - x_2\| + \|x_2 - x_0\| \\ &\leq q\|y_1 - x_1\| + (1+q)(1+\frac{p}{2})b_\rho \\ &\leq q^2(1+\frac{p}{2})b_\rho + (1+q)(1+\frac{p}{2})b_\rho \\ &\leq (1+q+q^2)(1+\frac{p}{2})b_\rho < L_0r \leq r. \end{aligned}$$

Hence, we proved that $y_2 \in U(x_0, r)$. Proceeding in an analogous way we prove that $x_n, y_n \in U(x_0, r)$. That completes the proof of the Theorem.

THEOREM 2.5. Suppose that the hypotheses of Theorem 2.4 hold. Then, sequence $\{x_{n,\alpha}^{\delta}\}$ remains in $U(x_0,r)$ for each $n = 0, 1, 2, \cdots$ and converges to a solution $x_{\alpha}^{\delta} \in \overline{U(x_0,r)}$ of equation (1.2). Moreover, the following estimates hold

(2.16)
$$||x_n - x_{\alpha}^{\delta}|| \le b_0 e^{-\gamma_0 n},$$

where $b_0 = (1 + \frac{p}{2})\gamma_{\rho}$ *and* $\gamma_0 = -\ln q > 0$.

Proof. Using (b) of Theorem 2.3 and (2.10) we get that

(2.17)
$$||x_{n+m} - x_n|| \le \sum_{i=0}^{m-1} ||x_{n+i+1} - x_{n+i}||.$$

But, we have

(2.18)
$$||x_{n+i+1} - x_{n+i}|| \le (1 + \frac{p}{2})q^{n+i}e_0.$$

In view of (2.18), inequality (2.17) gives that

(2.19)
$$\|x_{n+m} - x_n\| \leq [1 + q + q^2 + \dots + q^{m-1}]q^n(1 + \frac{p}{2})e_0 \\ \leq \frac{1 - q^m}{1 - q}(1 + \frac{p}{2})q^n e_0.$$

It follows from (2.19) that sequence $\{x_n\}$ is complete in a Hilbert space X and as such it converges to some $x_{\alpha}^{\delta} \in \overline{U(x_0, r)}$ (since $\overline{U(x_0, r)}$ is closed set). By letting $m \to \infty$ we obtain (2.16). Finally, to prove x_{α}^{δ} is a solution of (1.2), note that

$$\begin{aligned} \|A_0^*(F(x_n) - f^{\delta}) + \alpha(x_n - x_0)\| &= \|R_{\alpha}(x_n)(x_n - y_n)\| \\ &\leq (\|A_0^*F'(x_n)\| + \alpha)e_n \\ &\leq (\|A_0^*F'(x_n)\| + \alpha)q^n\gamma_{\rho} \to 0 \text{ as } n \to \infty. \end{aligned}$$

That completes the proof of the Theorem.

REMARK 2.6. (a) The convergence order of (TSNTM) is three [7] under (C1). In Theorem 2.5 the error bounds are too pessimistic. That is why in practice we shall use the computational order of convergence (COC) (see eg. [5]) defined by

$$\varrho \approx \ln\left(\frac{\|x_{n+1} - x_{\alpha}^{\delta}\|}{\|x_n - x_{\alpha}^{\delta}\|}\right) / \ln\left(\frac{\|x_n - x_{\alpha}^{\delta}\|}{\|x_{n-1} - x_{\alpha}^{\delta}\|}\right).$$

(b) In the rest of this section we suppose that

 $(2.20) \qquad \qquad \rho_0 \le r$

which is possible for x_0 sufficiently close to \hat{x} .

3. Error analysis

Next, we present the results concerning error bounds under source conditions. We need a condition on the source function.

ASSUMPTION 3.1. There exists a continuous, strictly monotonically increasing function $\varphi : (0, a] \to (0, \infty)$ with $a \ge ||A_0||^2$ satisfying $\lim_{\lambda \to 0} \varphi(\lambda) = 0$ and $v \in X$ with $||v|| \le 1$ such that

$$x_0 - \hat{x} = \varphi(A_0^* A_0) v$$

and

$$sup_{\lambda \ge 0} \frac{\alpha \varphi(\lambda)}{\lambda + \alpha} \le c_{\varphi} \varphi(\alpha), \quad \forall \lambda \in (0, a].$$

REMARK 3.2. It can easily be seen that functions

$$\varphi(\lambda) = \lambda^{\nu}, \quad \lambda > 0$$

for $0 < \nu \le 1$ *and*

$$\varphi(\lambda) = \begin{cases} (ln\frac{1}{\lambda})^{-\beta} &, & 0 < \lambda \le e^{-(\beta+1)} \\ 0 &, & otherwise \end{cases}$$

for $\beta \geq 0$ satisfy (C2) (cf. [35]).

THEOREM 3.3. [30, Theorem 3.1] Let x_{α}^{δ} be as in (1.8), r be as in (2.4) and let $q = L_0 r$. Suppose Assumptions 1.1 and Assumption 3.1 hold. Then

$$\|x_{\alpha}^{\delta} - \hat{x}\| \le \frac{1}{1-q} (\frac{\delta}{\sqrt{\alpha}} + \varphi(\alpha)).$$

THEOREM 3.4. Suppose hypotheses of Theorem 2.5 and Theorem 3.3 hold. Then, the following assertion holds

$$|x_n - \hat{x}|| \le b_0 e^{-\gamma_0 n} + \frac{1}{1-q} (\frac{\delta}{\sqrt{\alpha}} + \varphi(\alpha)).$$

Let

(3.1)
$$n_{\delta} := \min\{n : e^{-\gamma_0 n} \le \frac{\delta}{\sqrt{\alpha}}\}.$$

THEOREM 3.5. Let n_{δ} be as in (3.1). Suppose that hypothese of Theorem 3.4 hold. Then, the following assertions hold

(3.2)
$$||x_{n_{\delta}} - \hat{x}|| \leq \frac{1+b_0}{1-q}(\varphi(\alpha) + \frac{\delta}{\sqrt{\alpha}}).$$

Note that the error estimate $\varphi(\alpha) + \frac{\delta}{\sqrt{\alpha}}$ in (3.2) is of optimal order if $\alpha := \alpha_{\delta}$ satisfies, $\varphi(\alpha_{\delta})\sqrt{\alpha_{\delta}} = \delta$.

Now using the function $\psi(\lambda) := \lambda \sqrt{\varphi^{-1}(\lambda)}, 0 < \lambda \leq a$ we have $\delta = \sqrt{\alpha_{\delta}}\varphi(\alpha_{\delta}) = \psi(\varphi(\alpha_{\delta}))$, so that $\alpha_{\delta} = \varphi^{-1}(\psi^{-1}(\delta))$. In view of the above observations and (3.2) we have the following.

THEOREM 3.6. Let $\psi(\lambda) := \lambda \sqrt{\varphi^{-1}(\lambda)}$ for $0 < \lambda \le a$, and the assumptions in Theorem 3.5 hold. For $\delta > 0$, let $\alpha := \alpha_{\delta} = \varphi^{-1}(\psi^{-1}(\delta))$ and let n_{δ} be as in (3.1). Then

$$||x_{n_{\delta}} - \hat{x}|| = O(\psi^{-1}(\delta)).$$

In this section, we present a parameter choice rule based on the balancing principle studied in [21]. In this method, the regularization parameter α is selected from some finite set

$$D_M(\alpha) := \{\alpha_i = \mu^i \alpha_0, i = 0, 1, \cdots, M\}$$

where $\mu > 1$, $\alpha_0 > 0$ and let

$$n_i := \min\{n : e^{-\gamma_0 n} \le \frac{\delta}{\sqrt{\alpha_i}}\}.$$

Then for $i = 0, 1, \dots, M$, we have

$$\|x_{n_i,\alpha_i}^{\delta} - x_{\alpha_i}^{\delta}\| \le c \frac{\delta}{\sqrt{\alpha_i}}, \quad \forall i = 0, 1, \cdots M.$$

Let $x_i := x_{n_i,\alpha_i}^{\delta}$. The parameter choice strategy that we are going to consider in this paper, we select $\alpha = \alpha_i$ from $D_M(\alpha)$ and operate only with corresponding x_i , $i = 0, 1, \dots, M$. Proof of the following theorem is analogous to the proof of Theorem 4.4 in [15] (see also [16]).

THEOREM 3.7. (cf. [15], Theorem 4.4) Assume that there exists $i \in \{0, 1, 2, \dots, M\}$ such that $\varphi(\alpha_i) \leq \frac{\delta}{\sqrt{\alpha_i}}$. Suppose the hypotheses of Theorem 3.5 and Theorem 3.6 hold and let

$$l := max\{i : \varphi(\alpha_i) \le \frac{\delta}{\sqrt{\alpha_i}}\} < M,$$

$$k := max\{i : ||x_i - x_j|| \le 4\bar{c}\frac{\delta}{\sqrt{\alpha_j}}, \quad j = 0, 1, 2, \cdots, i\}.$$

Then $l \leq k$ and

$$\|\hat{x} - x_k\| \le c\psi^{-1}(\delta)$$

where $c = 6\bar{c}\mu$.

Finally the balancing algorithm associated with the choice of the parameter specified in Theorem 3.7 involves the following steps:

- Choose $\alpha_0 > 0$ such that $\delta_0 < (17 12\sqrt{2})\sqrt{\alpha_0}$ and $\mu > 1$.
- Choose *M* big enough but not too large and $\alpha_i := \mu^i \alpha_0, i = 0, 1, 2, \cdots, M$.
- Choose $\rho \leq \rho_0$.

3.1. Algorithm.

- 1. Set i = 0.
- 2. Choose $n_i = \min\{n : e^{-\gamma_0 n} \leq \frac{\delta}{\sqrt{\alpha_i}}\}.$
- 3. Solve $x_i = x_{n_i,\alpha_i}^{\delta}$ by using the iteration (1.8).
- 4. If $||x_i x_j|| > 4\overline{c} \frac{\delta}{\sqrt{\alpha_j}}, j < i$, then take k = i 1 and return x_k .
- 5. Else set i = i + 1 and return to Step 2.

4. Examples

Next we present two examples where (C1) is not satisfied but Assumption 1.1 is satisfied.

EXAMPLE 4.1. Let $X = Y = \mathbb{R}$, $D = [0, \infty)$, $x_0 = 1$ and define function F on D by

(4.1)
$$F(x) = \frac{x^{1+\frac{1}{i}}}{1+\frac{1}{i}} + c_1 x + c_2,$$

where c_1, c_2 are real parameters and i > 2 an integer. Then $F'(x) = x^{1/i} + c_1$ is not Lipschitz on D. That is (C1) cannot be satisfied. However, Assumption 1.1 holds for $L_0 = 1$.

Indeed, we have

$$||F'(x) - F'(x_0)|| = |x^{1/i} - x_0^{1/i}|$$

= $\frac{|x - x_0|}{x_0^{\frac{i-1}{i}} + \dots + x^{\frac{i-1}{i}}}$
 $\leq L_0 |x - x_0|.$

EXAMPLE 4.2. We consider the integral equations

(4.2)
$$u(s) = f(s) + \tau \int_{a}^{b} G(s,t)u(t)^{1+1/n} dt, \ n \in \mathbb{N}$$

Here, f is a given continuous function satifying $f(s) > 0, s \in [a, b], \tau$ is a real number, and the kernel G is continuous and positive in $[a, b] \times [a, b]$.

For example, when G(s,t) is the Green kernel, the corresponding integral equation is equivalent to the boundary value problem

(4.3)
$$u'' = \tau u^{1+1/n}$$

(4.4)
$$u(a) = f(a), u(b) = f(b).$$

These type of problems have been considered in [?], [2], [34].

Equation of the form (4.2) generalize equations of the form

(4.5)
$$u(s) = \int_a^b G(s,t)u(t)^n dt$$

studied in [?], [2], [34]. Instead of (4.2) we can try to solve the equation F(u) = 0 where

$$F: \Omega \subseteq C[a,b] \to C[a,b], \Omega = \{u \in C[a,b]: u(s) \ge 0, s \in [a,b]\},\$$

and

$$F(u)(s) = u(s) - f(s) - \tau \int_{a}^{b} G(s,t)u(t)^{1+1/n} dt.$$

The norm we consider is the max-norm.

The derivative F' is given by

$$F'(u)v(s) = v(s) - \tau(1 + \frac{1}{n}) \int_{a}^{b} G(s, t)u(t)^{1/n}v(t)dt, \ v \in \Omega.$$

First of all, we notice that F' does not satisfy a Lipschitz-type condition in Ω . Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F'(y)v(s) = v(s) and

$$||F'(x) - F'(y)|| = |\tau|(1 + \frac{1}{n}) \int_a^b x(t)^{1/n} dt$$

If F' were a Lipschitz function, then

$$||F'(x) - F'(y)|| \le L_1 ||x - y||,$$

or, equivalently, the inequality

(4.6)
$$\int_0^1 x(t)^{1/n} dt \le L_2 \max_{x \in [0,1]} x(s),$$

would hold for all $x \in \Omega$ and for a constant L_2 . But this is not true. Consider, for example, the functions

$$x_j(t) = \frac{t}{j}, \ j \ge 1, \ t \in [0, 1].$$

If these are substituted into (4.6)

$$\frac{1}{j^{1/n}(1+1/n)} \le \frac{L_2}{j} \Leftrightarrow j^{1-1/n} \le L_2(1+1/n), \ \forall j \ge 1.$$

This inequality is not true when $j \to \infty$.

Therefore, condition (4.6) is not satisfied in this case. However, Assumption 1.1 holds. To show this, let $x_0(t) = f(t)$ and $\gamma = \min_{s \in [a,b]} f(s), \alpha > 0$ Then for $v \in \Omega$,

$$\begin{aligned} \|[F'(x) - F'(x_0)]v\| &= |\tau|(1 + \frac{1}{n}) \max_{s \in [a,b]} |\int_a^b G(s,t)(x(t)^{1/n} - f(t)^{1/n})v(t)dt| \\ &\leq |\tau|(1 + \frac{1}{n}) \max_{s \in [a,b]} G_n(s,t) \end{aligned}$$

where
$$G_n(s,t) = \frac{G(s,t)|x(t) - f(t)|}{x(t)^{(n-1)/n} + x(t)^{(n-2)/n} f(t)^{1/n} + \dots + f(t)^{(n-1)/n}} \|v\|.$$

Hence,

$$\begin{aligned} \|[F'(x) - F'(x_0)]v\| &= \frac{|\tau|(1+1/n)}{\gamma^{(n-1)/n}} \max_{s \in [a,b]} \int_a^b G(s,t)dt \|x - x_0\| \\ &\leq L_0 \|x - x_0\|, \end{aligned}$$

where $L_0 = \frac{|\tau|(1+1/n)}{\gamma^{(n-1)/n}}N$ and $N = \max_{s \in [a,b]} \int_a^b G(s,t)dt$. Then Assumption 1.1 holds for sufficiently small τ . Other examples where $L_0 < L$ or L does not exist can be found in [1, 5].

References

- [1] I.K. Argyros, "Convergence and Application of Newton-type Iterations," Springer, 2008.
- [2] I. K. Argyros, "A Semilocal convergence for directional Newton methods", Math.Comput.(AMS). 80, 327-343 (2011).
- [3] Argyros, I.K., Hilout, S., Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions, Numer. Algorithms, 58 (2011), 23–52.
- [4] I. K. Argyros and Said Hilout, "A convergence analysis for directional two-step Newton methods", Numer. Algor., 55, 503-528 (2010).
- [5] I. K. Argyros, Y.J.Cho and S. Hilout, Numerical methods for equations and its applications, CRC Press, Taylor and Francis, New York, 2012.
- [6] I. K. Argyros and S. George, Expanding the applicability of a Newton-Lavrentiev regularization method for ill-posed problems (communicated).
- [7] I. K. Argyros and S. George, TikhonovâĂŹs regularization and a cubic convergent iterative approximation for nonlinear Ill-posed Problems, (2013), (Communicate).
- [8] A.B. Bakushinskii, "The problem of the convergence of the iteratively regularized Gauss-Newton method," Comput.Math.Phy., 32, 1353-1359(1992).
- [9] Bakushinskii, A.B, Iterative methods without saturation for solving degenerate nonlinear operator equations, Dokl.Akad.Nauk, 344(1995), 7-8, MR1361018.
- [10] C. Bockmann, A. Kammanee and A.Braunb, 'Logarithmic convergence of Levenberg-Marquardt method with application to an inverse potential problem," J. Inv. Ill-Posed Problems, 19(2011), 345-367.
- [11] T.Hohage, Logarithmic convergence rate of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13(1997), 1279-1299.
- [12] B.Kaltenbacher, A posteriori parameter choice strategies for some Newton-type methods for the regularization of nonlinear ill-posed problems, Numerische Mathematik, 79(1998), 501-528.
- [13] B.Kaltenbacher, A note on logarithmic convergence rates for nonlinear Tikhonov regularization, J.Inv.Ill-Posed Problems, 16(2008), 79-88.
- [14] S.Langer and T.Hohage, Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions, J. of Inverse & Ill-Posed Problems, 15(2007), 19-35.
- [15] S.George, On convergence of regularized modified Newton's method for nonlinear ill-posed problems, J.Inv.Ill-Posed Problems, 18(2010), 133-146.
- [16] S.George, "Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems," J. Math. vol. 2013, Article ID 439316, 9 pages, (2013), doi:10.1155/2013/439316.
- [17] C.W. Groetsch, Theory of Tikhonov regularization for Fredholm Equation of the first kind, pitmann Books, London, (1984).
- [18] B.Blaschke, A.Neubauer and O.Scherzer, "On convergence rates for the iteratively regularized Gauss-Newton method", IMA Journal on Numerical Analysis, 17(1997), 421- 436.
- [19] P.Mahale and M.T.Nair, A Simplified generalized Gauss-Newton method for nonlinear ill-posed problems, Mathematics of Computation, 78, no. 265, (2009), 171-184.
- [20] J.M.Ortega and W.C.Rheinboldt,Iterative solution of nonlinear equations in general variables, Academic Press, New York and London (1970).

- [21] S.V.Perverzev and E. Schock, "On the adaptive selection of the parameter in regularization of illposed problems", SIAM J.Numer.Anal. 43(2005), 2060-2076.
- [22] K. Levenberg, "A Method for the solution of certain problems in least squares," Quart.Appl.Math.2(1944), 164-168.
- [23] D. Marquardt, "An Algorithm for least-squares estimation of nonlinear parameters," SIAM J. Appl.Math., 11(1963), 431-441.
- [24] M. Hanke, "A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems," Inverse Problems, 13(1997), 79-95.
- [25] M.Kanke, "The regularizing Levenberg-Marquardt scheme is of optimal order," J.Integral Equations Appl. 22(2010), 259-283.
- [26] M.Hochbruck and M.Honig, "On the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems," Numer. Math. 115(2010), 71-79.
- [27] Q.Jin, "On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems," Numer. Math. 16(2010), 229-259.
- [28] O. Scherzer, H.W. Engl and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, Siam J. Numer. Anal., Vol. 30, No.6 (1993), 1796-1838.
- [29] V.Vasin, Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation, J. of Inverse & Ill-Posed Problems, DOI 10.1515/jip-2012-0084.
- [30] V.Vasin and S. George, Expanding the applicability of Tikhonov's regularization and iterative approximation for ill-posed problems, J.Inv.Ill-Posed Problems, (2013)(To appear).
- [31] S. George and A. I. Elmahdy, "A quadratic convergence yielding iterative method for nonlinear ill-posed operator equations", Comput. Methods Appl. Math. 12, 1, 32-45 (2012).
- [32] S. George and M. T. Nair, "A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-Type operator equation", Journal of Complexity, 24, 228-240 (2008).
- [33] Jin.Qi-Nian, "Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales", Inverse problems, 16, 187-197 (2000).
- [34] L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1964.
- [35] M.T. Nair and P. Ravishankar, "Regularized versions of continuous Newton's method and continuous modified Newton's method under general source conditions", Numer. Funct.Anal. Optim. 29(9-10), 1140-1165 (2008).
- [36] E.V.Semenova, "Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators", Comput. Methods Appl. Math., no.4, 444-454 (2010).