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Abstract. In [7] the authors presented a cubically convergent Two Step Newton Tikhonov
Method (TSNTM) to approximate a solution of an ill-posed equation. In the present pa-
per we show how to expand the applicability of (TSNTM). In particular, we present a
semilocal convergence analysis of (TSNTM) under: weaker hypotheses, weaker conver-
gence criteria, tighter error estimates on the distances involved and at least as precise
information on the location of the solution.
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1. Introduction

In this study we consider the task of approximately solving the nonlinear ill-posed
operator equation

(1.1) F (x) = f,

where F : D(F ) ⊆ X → Y is a nonlinear operator between the Hilbert spaces X and Y.
Let Br(x) and Br(x), stand respectively, for the open and closed ball in X with center x
and radius r > 0. Let 〈., .〉 denote the inner product and ‖.‖ denote the corresponding
norm. It is assumed that (1.1) has a solution, namely x̂, i.e., F (x̂) = f. We assume
throughout that f δ ∈ Y are the available data such that ‖f − f δ‖ ≤ δ. Hence the
problem of computing of x̂ from equation F (x) = f δ is ill-posed (irregular) problem.
In such a case, it is necessary either to pass to regularized analogues of these meth-
ods on the basis of the iterative regularization principle ([1], [12], [16], [8], [9], [11],
[14], [18], [19], [10], [22]-[27]) or to apply these iterative processes to the regularized
equation([15], [16], [29])

(1.2) Sα(x) := F ′(x)∗(F (x)− f δ) + α(x− x0) = 0
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for some fixed and appropriately chosen regularization parameter α and initial guess
x0 (see [29]). It is known that the solution uδα of the equation (1.2) is an approximation
of x̂ provided α > 0 is chosen properly (see [28]).

Observe that the operator Sα(x) in (1.2) is the gradient of the Tikhonov ([17], [13],
[29]) functional

Φ(x) =
1

2
‖F (x)− f δ‖2 + α‖x− x0‖2.

In [29], Vasin considered the iterative method

(1.3) uk+1
α = ukα − [F ′(ukα)∗F ′(ukα) + ᾱI]−1Sα(ukα)

and its modified variant in the form

(1.4) uk+1
α = ukα − [F ′(u0α)∗F ′(u0α) + ᾱI]−1Sα(ukα)

with ᾱ > α for approximation of the solution uδα of the equation (1.2). The results in
[29], was proved using the following conditions

(1.5) ‖F ′(x)‖ ≤ N1, ‖F ′(x)− F ′(y)‖ ≤ N2‖x− y‖

where N1 > 0, N2 > 0 are constants. Recently, in [30], Vasin and George considered a
modified variant of (1.4), i.e., the iteration

(1.6) uk+1
α = ukα − [A∗A+ βI]−1[A∗(F (ukα)− yδ) + α(ukα − u0)], u0α = u0,

where A := F ′(u0), α > 0 is the regularization parameter and β is a constant. In [30],
instead of Lipschitz condition (1.5), the following center Lipschitz condition is used.

ASSUMPTION 1.1. Suppose there exists constantsL0 > 0 such that for all x ∈ B(x0, r) ⊆
D(F ) and w ∈ X, there exists elements ϕ(x, x0, w) ∈ X such that

[F ′(x)− F ′(x0)]w = F ′(x0)ϕ(x, x0, w), ‖ϕ(x, x0, w)‖ ≤ L0‖x− x0‖‖w‖.

In [7], the authors considered the following Two Step Newton Tikhonov Method(TSNTM)
defined by:

(1.7) yδn,α = xδn,α −Rα(xδn,α)−1[A∗0(F (xδn,α)− yδ) + α(uδn,α − x0)]

and

(1.8) xδn+1,α = yδn,α −Rα(xδn,α)−1[A∗0(F (yδn,α)− yδ) + α(yδn,α − x0)],

where xδ0,α = x0, Rα(x) := (A∗0Ax + αI), Ax := F ′(x), A0 = F ′(x0) and α > 0 is the
regularization parameter and proved that xδn,α converges cubically to the solution xδα

of

(1.9) A∗0F (xδα) + α(xδα − x0) = A∗0y
δ
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and that xδα is an approximation of x̂..
The semilocal convergence analysis was based on the following conditions which has

been used extensively in the study of iterative procedures for solving ill-posed problems
[31], [33], [36].

(C1) There exists a constant L > 0 such that for each x, u ∈ D(F ) and v ∈ X, there
exists an element P (x, u, v) ∈ X satisfying

[F ′(x)− F ′(u)]v = F ′(u)P (x, u, v), ‖P (x, u, v)‖ ≤ L‖v‖‖x− u‖.

In the present paper, we extend the convergence domain of (TSNTM) under weaker
sufficient semilocal convergence criteria. Moreover, the upper bounds on the distances
‖xδn+1,α−xδn,α‖, ‖xδn,α−xδα‖ are tighter and the information on the location of the solution
xδα at least as precise (see Section 3).

There are cases when Lipschitz-type condition (C1) is violated (see Section 4) but
the weaker central-Lipschitz condition in Assumption 1.1 is satisfied. Note that L0 ≤ L

hold in general and L
L0

can be arbitrarily large [1]-[6].
In section 2 we provide a semilocal convergence analysis for (TSNTM) using As-

sumption 1.1 instead of (C1). We shall refer to [30], [16] for some of the proofs omitted
in this study.

2. Semilocal convergence of (TSNTM)

In this section we present the semilocal convergence of (TSNTM) using Assumption
1.1. In due course we shall make use of the following lemma extensively.

LEMMA 2.1. Let L0r < 1 and u ∈ Br(x0). Then (A∗0Au + αI) is invertible:
(i)

(A∗0Au + αI)−1 = [I + (A∗0A0 + αI)−1A∗0(Au − A0)]
−1(A∗0A0 + αI)−1

and
(ii)

‖(A∗0Au + αI)−1A∗0A0‖ ≤
1

1− L0r
,

where Au := F ′(u).

Proof. Note that by Assumption 1.1, we have

‖(A∗0A0 + αI)−1A∗0(Au − A0)‖ = sup
‖v‖≤1

‖(A∗0A0 + αI)−1A∗0(Au − A0)v‖

= sup
‖v‖≤1

‖(A∗0A0 + αI)−1A∗0A0Φ(u, x0, v)‖

≤ L0‖u− x0‖ ≤ L0r < 1.
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So I+(A∗0A0+αI)−1A∗0(Au−A0) is invertible. Now (i) follows from the following relation

A∗0Au + αI = (A∗0A0 + αI)[I + (A∗0A0 + αI)−1A∗0(Au − A0)].

To prove (ii), observe that by Assumption 1.1, we have

‖(A∗0Au + αI)−1A∗0A0‖ = sup
‖v‖≤1

‖(A∗0Au + αI)−1A∗0A0v‖

= sup
‖v‖≤1

‖[I + (A∗0A0 + αI)−1A∗0(Au − A0)]
−1

(A∗0A0 + αI)−1A∗0A0v‖

≤ 1

1− L0r
‖(A∗0A0 + αI)−1A∗0A0v‖]

≤ 1

1− L0r
.

This completes the proof.
We need to introduce some sequences and parameters:

(2.1) eδn,α := ‖yδn,α − xδn,α‖, ∀n = 0, 1, · · · ,

for δ0 < (17− 12
√

2)
√
α0 for some α0 > 0 and ‖x0 − x̂‖ ≤ ρ,

(2.2) ρ ≤

√
1 + 2L0(17− 12

√
2− δ0√

α0
)− 1

L0

= ρ0.

Let

(2.3) bρ =
L0

2
ρ2 + ρ+

δ0√
α0

,

(2.4) r =
1

L0

2bρ

1− bρ +
√

(1− bρ)2 − 32bρ
,

(2.5) γρ =
1

1− L0r
[
L0

2
ρ2 + ρ+

δ0√
α0

],

and

(2.6) p = 2L0r, q = 2p2.
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Note that r is well defined, since p
2
< 1, q ∈ (0, 1) and bρ ∈ (0, 17− 12

√
2]. Also note that

r > 1
2
√
2L0

and hence 8L3
0r

3 > L0r, so we have

1 + L0r

1− 8L2
0r

2
γρ =

1 + L0r

(1− 8L2
0r

2)(1− L0r)
bρ

=
1 + L0r

1− 8L2
0r

2 + (8L3
0r

3 − L0r)
bρ

≤ 1 + L0r

1− 8L2
0r

2
bρ =

1 + p
2

1− q
bρ = L0r.(2.7)

In order for us to simplify the notation, let xn, yn and en, stand, respectively for
xδn,α, y

δ
n,α and eδn,α. If we simply use the needed Assumption 1.1 instead of (C1) we arrive

at:

LEMMA 2.2. Suppose that Assumption 1.1 holds and γρ is given by (2.5). Then, the
following assertion holds

e0 ≤ γρ

Proof. Using (2.1), (2.2), (2.3) and (C1)′′ we obtain in turn that

e0 = ‖y0 − x0‖ = ‖Rα(x0)
−1A∗0(F (x0)− f δ)‖

= ‖Rα(x0)
−1A∗0[F (x0)− F (x̂)− F ′(x0)(x0 − x̂)

+F ′(x0)(x0 − x̂) + F (x̂)− f δ]‖

= ‖Rα(x0)
−1A∗0[

∫ 1

0

(F ′(x0 + t(x̂− x0))− F ′(x0))dt(x0 − x̂)

+F ′(x0)(x0 − x̂) + F (x̂)− f δ]‖

≤ 1

1− L0r
[‖
∫ 1

0

Φ(x0 + t(x̂− x0), x0, x0 − x̂)‖+ ‖x0 − x̂‖

+‖Rα(x0)
−1A∗0(F (x̂)− f δ)‖]

≤ 1

1− L0r
[
L0

2
‖x0 − x̂‖2 + ‖x0 − x̂‖+

1

α
‖F (x̂)− f δ‖]

≤ 1

1− L0r
[
L0

2
ρ2 + ρ+

δ√
α

]

≤ 1

1− L0r
[
L0

2
ρ2 + ρ+

δ0√
α0

] = γρ.

The proof of the Lemma is complete. With the notion introduced so far we can present
the semilocal convergence analysis of (TSNTM) using the next three results.

THEOREM 2.3. Suppose that Assumption 1.1 holds and δ ∈ (0, δ0].Then, the following
assertions hold
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(a) ‖xn − yn‖ ≤ p‖yn−1 − xn−1‖ = pen−1,

(b) ‖xn − xn−1‖ ≤ (1 + p
2
)en−1,

(c) en ≤ qen−1.

Proof. Using (1.7) and (1.8) we get that

xn − yn−1 = yn−1 − xn−1 −Rα(xn−1)
−1[A∗0(F (yn−1)− F (xn−1))

+α(yn−1 − xn−1)]

= Rα(xn−1)
−1[Rα(xn−1)(yn−1 − xn−1)

−A∗0(F (yn−1)− F (xn−1))− α(yn−1 − xn−1)]

= Rα(xn−1)
−1A∗0

∫ 1

0

{F ′(xn−1)− F ′(xn−1 + t(yn−1 − xn−1))}

×(yn−1 − xn−1)dt

= Rα(xn−1)
−1A∗0

∫ 1

0

{F ′(xn−1)− F ′(x0) + F ′(x0)

−F ′(xn−1 + t(yn−1 − xn−1))}(yn−1 − xn−1)dt.(2.8)

In view of Assumption 1.1 and (2.8) we have that

‖xn − yn−1‖ ≤
1

1− L0r
[‖
∫ 1

0

Φ(xn−1, x0, yn−1 − xn−1)dt‖

+‖
∫ 1

0

Φ(xn−1 + t(yn−1 − xn−1), x0, xn−1 − yn−1)dt‖]

≤ 1

1− L0r
[L0[‖xn−1 − x0‖

+

∫ 1

0

‖xn−1 − x0 + t(yn−1 − xn−1)‖dt]‖yn−1 − xn−1‖]

≤ 1

1− L0r
[2L0r‖yn−1 − xn−1‖

= p‖yn−1 − xn−1‖] = pen−1.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖xn − xn−1‖ ≤ ‖xn − yn−1‖+ ‖yn−1 − xn−1‖.
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To prove (c) we first use (1.7) and (1.8) to obtain in turn the identity

yn − xn = xn − yn−1 −Rα(xn)−1[A∗0(F (xn)− f δ) + α(xn − x0)]

+Rα(xn−1)
−1[A∗0(F (yn−1)− f δ) + α(yn−1 − x0)]

= xn − yn−1 −Rα(xn)−1[A∗0(F (xn)− F (yn−1) + α(xn − yn−1)]

+[Rα(xn−1)
−1 −Rα(xn)−1][A∗0(F (yn−1)− f δ) + α(yn−1 − x0)]

= Rα(xn)−1[Rα(xn)(xn − yn−1)− A∗0(F (xn)− F (yn−1))

−α(xn − yn−1)] + [Rα(xn−1)
−1 −Rα(xn)−1]

×[A∗0(F (yn−1)− f δ) + α(yn−1 − x0)].(2.9)

Then, again by Assumption 1.1 and (2.9) we obtain that

en ≤ ‖Rα(xn)−1A∗0

∫ 1

0

[F ′(xn)− F ′(yn−1 + t(xn − yn−1))]dt(xn − yn−1)‖

+‖Rα(xn)−1(F ′(xn)− F ′(xn−1))Rα(xn−1)
−1[A∗0(F (yn−1)− f δ)

+α(yn−1 − x0)]‖

≤ ‖Rα(xn)−1A∗0

∫ 1

0

[F ′(xn)− F ′(yn−1 + t(xn − yn−1))]dt(xn − yn−1)‖

+‖Rα(xn)−1(F ′(xn)− F ′(xn−1))(yn−1 − xn)‖

≤ 1

1− L0r
[L0[‖xn − x0‖+

∫ 1

0

‖yn−1 − x0 + t(xn − yn−1)‖dt]‖xn − yn−1‖]

+L0[‖xn − x0‖+ ‖xn−1 − x0‖]‖xn − yn−1‖

≤ 1

1− L0r
[4L0r‖yn−1 − xn‖] = 4L0r(2L0r)en−1

= qen−1.

This completes the proof of the Theorem.

THEOREM 2.4. Under the hypotheses of Theorem 2.3 further suppose that

(2.10) ρ < ρ0 and L0 ≤ 1.

Moreover, suppose that

(2.11) U(x0, r) ⊆ D(F ).

Then, xn, yn ∈ U(x0, r) for each n = 0, 1, 2, · · · .

Proof. We note by (2.10) that we have

(2.12) q ∈ (0, 1).
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Using Lemma 2.2, Theorem 2.3 and (2.11) we get that

‖x1 − x0‖ ≤ (1 + L0r)e0 ≤ (1 + L0r)bρ < r.

Hence, x1 ∈ U(x0, r). Similarly, we obtain that

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖(2.13)

≤ qe0 + (1 +
p

2
)bρ(2.14)

≤ [q + 1 +
p

2
]bρ < L0r ≤ r,(2.15)

which implies y1 ∈ U(x0, r). Moreover, we have that

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖

≤ (1 +
p

2
)‖y1 − x1‖+ (1 +

p

2
)bρ

≤ (1 +
p

2
)qbρ + (1 +

p

2
)bρ

= (1 + q)(1 +
p

2
)bρ < L0r ≤ r,

which also implies x2 ∈ U(x0, r). Furthermore, we obtain that

‖y2 − x0‖ ≤ ‖y2 − x2‖+ ‖x2 − x0‖

≤ q‖y1 − x1‖+ (1 + q)(1 +
p

2
)bρ

≤ q2(1 +
p

2
)bρ + (1 + q)(1 +

p

2
)bρ

≤ (1 + q + q2)(1 +
p

2
)bρ < L0r ≤ r.

Hence, we proved that y2 ∈ U(x0, r). Proceeding in an analogous way we prove that
xn, yn ∈ U(x0, r). That completes the proof of the Theorem.

THEOREM 2.5. Suppose that the hypotheses of Theorem 2.4 hold. Then, sequence
{xδn,α} remains in U(x0, r) for each n = 0, 1, 2, · · · and converges to a solution xδα ∈
U(x0, r) of equation (1.2). Moreover, the following estimates hold

(2.16) ‖xn − xδα‖ ≤ b0e
−γ0n,

where b0 = (1 + p
2
)γρ and γ0 = − ln q > 0.

Proof. Using (b) of Theorem 2.3 and (2.10) we get that

(2.17) ‖xn+m − xn‖ ≤
m−1∑
i=0

‖xn+i+1 − xn+i‖.
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But, we have

(2.18) ‖xn+i+1 − xn+i‖ ≤ (1 +
p

2
)qn+ie0.

In view of (2.18), inequality (2.17) gives that

‖xn+m − xn‖ ≤ [1 + q + q2 + · · ·+ qm−1]qn(1 +
p

2
)e0

≤ 1− qm

1− q
(1 +

p

2
)qne0.(2.19)

It follows from (2.19) that sequence {xn} is complete in a Hilbert space X and as such
it converges to some xδα ∈ U(x0, r) ( since U(x0, r) is closed set). By letting m → ∞ we
obtain (2.16). Finally, to prove xδα is a solution of (1.2), note that

‖A∗0(F (xn)− f δ) + α(xn − x0)‖ = ‖Rα(xn)(xn − yn)‖

≤ (‖A∗0F ′(xn)‖+ α)en

≤ (‖A∗0F ′(xn)‖+ α)qnγρ → 0 as n→∞.

That completes the proof of the Theorem.

REMARK 2.6. (a) The convergence order of (TSNTM) is three [7] under (C1). In
Theorem 2.5 the error bounds are too pessimistic. That is why in practice we
shall use the computational order of convergence (COC) (see eg. [5]) defined by

% ≈ ln

(
‖xn+1 − xδα‖
‖xn − xδα‖

)
/ ln

(
‖xn − xδα‖
‖xn−1 − xδα‖

)
.

(b) In the rest of this section we suppose that

(2.20) ρ0 ≤ r

which is possible for x0 sufficiently close to x̂.

3. Error analysis

Next, we present the results concerning error bounds under source conditions. We
need a condition on the source function.

ASSUMPTION 3.1. There exists a continuous, strictly monotonically increasing func-
tion ϕ : (0, a]→ (0,∞) with a ≥ ‖A0‖2 satisfying limλ→0ϕ(λ) = 0 and v ∈ X with ‖v‖ ≤ 1

such that
x0 − x̂ = ϕ(A∗0A0)v

and
supλ≥0

αϕ(λ)

λ+ α
≤ cϕϕ(α), ∀λ ∈ (0, a].
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REMARK 3.2. It can easily be seen that functions

ϕ(λ) = λν , λ > 0

for 0 < ν ≤ 1 and

ϕ(λ) =

{
(ln 1

λ
)−β , 0 < λ ≤ e−(β+1)

0 , otherwise

for β ≥ 0 satisfy (C2) (cf. [35]).

THEOREM 3.3. [30, Theorem 3.1] Let xδα be as in (1.8), r be as in (2.4) and let q = L0r.

Suppose Assumptions 1.1 and Assumption 3.1 hold. Then

‖xδα − x̂‖ ≤
1

1− q
(
δ√
α

+ ϕ(α)).

THEOREM 3.4. Suppose hypotheses of Theorem 2.5 and Theorem 3.3 hold. Then, the
following assertion holds

‖xn − x̂‖ ≤ b0e
−γ0n +

1

1− q
(
δ√
α

+ ϕ(α)).

Let

(3.1) nδ := min{n : e−γ0n ≤ δ√
α
}.

THEOREM 3.5. Let nδ be as in (3.1). Suppose that hypothese of Theorem 3.4 hold.
Then, the following assertions hold

(3.2) ‖xnδ − x̂‖ ≤
1 + b0
1− q

(ϕ(α) +
δ√
α

).

Note that the error estimate ϕ(α) + δ√
α

in (3.2) is of optimal order if α := αδ satisfies,
ϕ(αδ)

√
αδ = δ.

Now using the function ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ a we have δ =

√
αδϕ(αδ) =

ψ(ϕ(αδ)), so that αδ = ϕ−1(ψ−1(δ)). In view of the above observations and (3.2) we have
the following.

THEOREM 3.6. Let ψ(λ) := λ
√
ϕ−1(λ) for 0 < λ ≤ a, and the assumptions in Theorem

3.5 hold. For δ > 0, let α := αδ = ϕ−1(ψ−1(δ)) and let nδ be as in (3.1). Then

‖xnδ − x̂‖ = O(ψ−1(δ)).

In this section, we present a parameter choice rule based on the balancing principle
studied in [21]. In this method, the regularization parameter α is selected from some
finite set

DM(α) := {αi = µiα0, i = 0, 1, · · · ,M}
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where µ > 1, α0 > 0 and let

ni := min{n : e−γ0n ≤ δ
√
αi
}.

Then for i = 0, 1, · · · ,M, we have

‖xδni,αi − x
δ
αi
‖ ≤ c

δ
√
αi
, ∀i = 0, 1, · · ·M.

Let xi := xδni,αi . The parameter choice strategy that we are going to consider in this
paper, we select α = αi from DM(α) and operate only with corresponding xi, i =

0, 1, · · · ,M. Proof of the following theorem is analogous to the proof of Theorem 4.4 in
[15] (see also [16]).

THEOREM 3.7. (cf. [15], Theorem 4.4) Assume that there exists i ∈ {0, 1, 2, · · · ,M}
such that ϕ(αi) ≤ δ√

αi
. Suppose the hypotheses of Theorem 3.5 and Theorem 3.6 hold

and let

l := max{i : ϕ(αi) ≤
δ
√
αi
} < M,

k := max{i : ‖xi − xj‖ ≤ 4c̄
δ
√
αj
, j = 0, 1, 2, · · · , i}.

Then l ≤ k and

‖x̂− xk‖ ≤ cψ−1(δ)

where c = 6c̄µ.

Finally the balancing algorithm associated with the choice of the parameter speci-
fied in Theorem 3.7 involves the following steps:

• Choose α0 > 0 such that δ0 < (17− 12
√

2)
√
α0 and µ > 1.

• Choose M big enough but not too large and αi := µiα0, i = 0, 1, 2, · · · ,M.

• Choose ρ ≤ ρ0.

3.1. Algorithm.

1. Set i = 0.

2. Choose ni = min{n : e−γ0n ≤ δ√
αi
}.

3. Solve xi = xδni,αi by using the iteration (1.8).
4. If ‖xi − xj‖ > 4c̄ δ√

αj
, j < i, then take k = i− 1 and return xk.

5. Else set i = i+ 1 and return to Step 2.
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4. Examples

Next we present two examples where (C1) is not satisfied but Assumption 1.1 is
satisfied.

EXAMPLE 4.1. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on D by

(4.1) F (x) =
x1+

1
i

1 + 1
i

+ c1x+ c2,

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is not
Lipschitz on D. That is (C1) cannot be satisfied. However, Assumption 1.1 holds for
L0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 |

=
|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

≤ L0|x− x0|.

EXAMPLE 4.2. We consider the integral equations

(4.2) u(s) = f(s) + τ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N.

Here, f is a given continuous function satifying f(s) > 0, s ∈ [a, b], τ is a real number,
and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral equation is
equivalent to the boundary value problem

u′′ = τu1+1/n(4.3)

u(a) = f(a), u(b) = f(b).(4.4)

These type of problems have been considered in [?], [2], [34].
Equation of the form (4.2) generalize equations of the form

(4.5) u(s) =

∫ b

a

G(s, t)u(t)ndt

studied in [?], [2], [34]. Instead of (4.2) we can try to solve the equation F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b],Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and
F (u)(s) = u(s)− f(s)− τ

∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

97



The derivative F ′ is given by

F ′(u)v(s) = v(s)− τ(1 +
1

n
)

∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us
consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |τ |(1 +
1

n
)

∫ b

a

x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,

or, equivalently, the inequality

(4.6)
∫ 1

0

x(t)1/ndt ≤ L2 max
x∈[0,1]

x(s),

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for
example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (4.6)
1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (4.6) is not satisfied in this case. However, Assumption 1.1 holds.

To show this, let x0(t) = f(t) and γ = mins∈[a,b] f(s), α > 0 Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |τ |(1 +
1

n
) max
s∈[a,b]

|
∫ b

a

G(s, t)(x(t)1/n − f(t)1/n)v(t)dt|

≤ |τ |(1 +
1

n
) max
s∈[a,b]

Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n‖v‖.

Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|τ |(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a

G(s, t)dt‖x− x0‖

≤ L0‖x− x0‖,

where L0 = |τ |(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]
∫ b
a
G(s, t)dt. Then Assumption 1.1 holds for

sufficiently small τ. Other examples where L0 < L or L does not exist can be found in
[1, 5].
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