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Abstract. The investigation of approximate solutions of inverse problems is given in
work. For obtaining of the useful information about the exact solution of an inverse
problem of measurement a special hypothesis is offered. Two practical inverse prob-
lems of measurement are considered where the hypothesis is used: inverse problem of
Le Verrier and identification of unbalance characteristics of rotor. For obtaining of sta-
ble solutions of these problems a various statements have been considered. Numerical
calculation of real problems with application of regularization method is performed.
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1. Introduction

Good coincidence of mathematical results and properties of real physical processes
are surprising for many researchers who studied the practical problems with the use of
mathematical methods. It is known that the same approaches can correctly describe
many physical phenomena which are not clearly related. For example, the Laplace
equation is describing well the physical processes of the stationary propagation of
heat, the stationary fluid flow and even some of the economic processes [1].

And the amazing thing is that mathematics operates using abstract geometrical
objects like of points, lines, planes etc. Such objects do not exist in nature, but solutions
of practical problems with the use of these abstract objects correspond to reality quite
well.

Such specific quality of mathematics put it in a privileged position among the other
sciences.

2. Physical determinism of real processes

To explain this position of mathematics we return to physical determinism of real
processes properties [2], [3]. Briefly, this property can be formulated as follows: small
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changes in the initial data in the traditional problems correspond to small changes in
characteristics of the physical process. This fact can be proven by appropriate stability
theorems described by mathematical language [1]. The mathematics only fixes these
properties of physical processes but does not create them. We will call this property
as a property P.

In the set of inverse problems exist some of them in which the error of a mathemat-
ical model of a real physical process it is necessary to taken into account [4], [5]. Such
type of inverse problems were named as inverse problems of measurement (inverse
problems of interpretation or inverse problems of recognition) [6].

Thus, in the process of research of unreal objects that are close to the corresponding
characteristics of real objects, based on the property P, can be obtained results that
agree well with practice.

Let the mathematical problem of some physical process is represented in the form:

(1) Ãz = u,

where z ∈ Z, u ∈ U (Z,U are functional spaces), Ã is approximate operator of process; z
is, as a rule, external load, function u is result of external load on process (as response
on it).

The property P initiates to appearance specific property of operator Ã. As a rule,
this operator is compact operator [2], [7]. In this case the problem of function u deter-
mination with initial data z, Ã, will be stable with respect to small changes of these
initial data (propertyP ).

The requirement for stability of the solution of a mathematical problem is indispens-
able item in the definition of the correctness of the mathematical problem, formulated
by J. Hadamard at the beginning of XX-th century [2], [7]. Lack of stability leads to
considerable difficulties in approximate calculations.

In this case we have the sets of approximate initial data:

(2) z ∈ Zin = {z}, Ã ∈ KA = {Ã},

Each pair of source data corresponds to one or more functions u. For the simplicity,
we assume that the function u is uniquely determined. Many functions u will form
a lot of different responses. Two pairs of initial data {z, Ã}, z ∈ Zin, Ã ∈ KA which
are close to each other {z1, Ã1}, {z2, Ã2}, will give the pair of the close responses u1, u2

. Naturally, the concepts of the close responses can be different.
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3. Specificity of inverse problems

Let’s consider the inverse problem presented in the form (1), where the function z

is unknown, and the input is characterized by the couple {u, Ã}, u ∈ Uin, Ã ∈ KA.
If the operator Ã is compact then close pairs of initial data u1, u2 can not give close

solutions of the inverse problem z1, z2, Ã1z1 = u1, Ã1z2 = u2. It can be shown that
inverse operator Ã−1 corresponding to compact operator Ã ∈ KA is not continuous [2],
[7].

Inverse problems can be divided in two classes: the problem of synthesis and mea-
surement’s problems (problems of interpretation) [4], [5], [6]. In case of synthesis
problems the obtaining solution z̃ is used later for forecast of function ũ = Ãz̃. It is
a problem of receiving a function ũ that will be close to a given one ugiv [4], [6]. In
the synthesis problems the size of error of the solution obtained is not important. The
function ũ will be close to the desired function ugiv due to compactness of operator Ã

(property P). For this reason the approximate solution of inverse problems of synthesis
are suitable for further use in spite of their differences among themselves because of
the instability.

The final goal in the measuring problems is to obtain a function z̃ that is close to
real function of external load zex. In this case, the error of the solution of the inverse
problem with respect to the exact function will be essential [4], [5]. However, it is
impossible to accurately describe the physical process with the use of mathematical
methods (approximate methods), and to get the exact relationship uex = Aexzex. There-
fore, it is impossible, in principle, to construct an approximate solution of the inverse
problem of measurement z̃ which would be close to absolutely exact solution of the in-
verse problem zex. Furthermore, it is impossible to estimate the error of approximate
solution z̃ with respect to the absolutely exact solution zex.

The algorithm for constructing an approximate solution based on the Tikhonov reg-
ularization method is proposed in works [2], [7], [8], [9].

Let the functions z, u belong to a Banach functional spaces z ∈ Z, u ∈ U . Further
assume that the exact operator Aex is linear. Suppose also that deviations of initial
data {ũ, Ã} with respect the exact data {uex, Aex} are given:

(3) ∥ Ã− Aex ∥Z→U≤ h, ∥ ũ− uex ∥U≤ δ.

Solution of the inverse problem is reduced to solution of following extreme problem:
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(4) inf
z∈Z1

Mα[z, uδ, Ã] = inf
z∈Z1

∥ Ãz − uδ ∥2U +αΩ[z] = Mα[zα, uδ, Ã],

where Ω[z] is stabilizing functional for equation [2], [7]. Regularization parameter α

can be determined by the method of generalized discrepancy:

(5) ∥ Ãzα − uδ ∥2U= (δ + h∥zα∥)2 + µ2(ũ, Ã),

where µ(ũ, Ã) is a degree of inconsistency.
However, there’s no way to determine the error h because the exact operator Aex is

unknown. Furthermore, the exact operator Aex can not be built in principle as far as
mathematical methods only approximately describe the real processes.

Of course, with certain assumptions regarding of exact operator Aex it is possible to
get some estimate of error, however, such an assessment will be unreal.

Therefore, the approximate solution of inverse problems of measurement are not of
interest for practical use because of the instability of such solutions.

Way out of this impasse exists if we instead of solution of inverse problem will limited
only to obtaining the estimates of the exact solution.

4. Main Hypothesis

To obtain useful information about the exact solution of the inverse problem of mea-
surement is suggested the following hypothesis [10], [11], [12]: for absolutely exact
solution of the inverse problem, the inequality for any operator in the approximate
equation of the inverse problem (1) is valid and has the form

(6) Ω[zex] ≥ Ω[zα]

where zex there is an exact solution of the inverse problem of measurement, zα is the
regularized solution of the inverse problem with the operator Ã. It is supposed that
operator Ã in (1) describes adequately process. If the exact operator is linear, then the
inequality ( 6) is obvious.

Basic research efforts of inverse problems investigation are transferred to the sphere
of evidence for the existence, uniqueness and stability estimates of exact solutions of
measurement’s inverse problems [10], [11], [12].
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Theorem 1. If the functional space Z is reflex Banach space, the functional Ω[zα] is
convex and lower semi-continuous on Z, Lebesgue’s set for some function from Qp,δ ∈ Z

is bounded then the function zα ∈ Qp,δ exists.

To illustrate the use of this hypothesis we consider two practical problems of mea-
surement: inverse problem of astrodynamics and the problem of identification of tech-
nological resistance on the rolling mill of sheets [11], [13], [14].

5. Inverse problem of astrodynamics

The problem of determining the position of an unknown gravitational mass with the
use of results of the processing of the observed perturbations in the motion of celestial
bodies, caused by this mass, is investigated.

At first, this problem was considered by J. D. Adams and Le Verrier in 1845-1846.
In this paper the another approach was suggested which provides the greater univer-
satility.

Let us consider n interacting masses moving under the forces of mutual attraction
in an inertial coordinate system. Denote masses mi the indexes i(i = 1, 2, 2, .., n), r⃗ik

denote the vectors connecting the mass mi with mass mk. According to Newton’s law
on mass mj acts the resultant force equal

(7) F⃗j = G
n∑

i=1,i ̸=j

mimj

|r⃗ij|3
r⃗ij,

where G is the gravitational constant.
Under this force the motion of mass mj is described by differential equation

(8) d2r⃗0j(t)

dt2
=

1

mj

F⃗j,

where r⃗0j is the radius vector joining the origin of the inertial coordinate system with
mass mj.

Let us transform the right part of equation (8) to variables r⃗0j, j = 1, 2, 3, ., n.

(9) d2r⃗0j(t)

Gdt2
=

1

Gmj

F⃗j =
n∑

i=1,i ̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j),

It is assumed that among n gravitational masses only the location of mass mn is
unknown. Then in ( 9) the last term in the sum on the right part is uncertain.

75



Equation ( 9) takes the form

(10) d2r⃗0j(t)

Gdt2
=

n−1∑
i=1,i ̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)− f̄j(t), j ̸= n,

where
f̄j(t) =

mn

|r⃗on − r⃗oj|3
(r⃗0n − r⃗0j)

is the unknown function.
In projections on the inertial coordinate system equations (10) can are written as:

(11) d2x0j(t)

Gdt2
=

n−1∑
i=1,i ̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)x − f⃗jx(t), j ̸= n,

(12) d2y0j(t)

Gdt2
=

n−1∑
i=1,i̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)y − f⃗jy(t), j ̸= n,

(13) d2z0j(t)

Gdt2
=

n−1∑
i=1,i̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)z − f⃗jz(t), j ̸= n,

where r⃗0j = i⃗x0j+ j⃗y0j+ k⃗z0j; f⃗jx, f⃗jy, f⃗jz - the projections of f⃗j on the corresponding axis
of inertial coordinate system,(r⃗0i − r⃗0j)x, (r⃗0i − r⃗0j)y, (r⃗0i − r⃗0j)z - the similar projections
of the vector (r⃗0i − r⃗0j).

Integrate equation (11), (12), (13) twice from t0 to t we obtain:

x0j(t)

G
=

∫ t

t0

µ1(τ)(t− τ)dτ +

∫ t

t0

fjx(τ)(t− τ)dτ +
ẋ0j(t0)

G
+

x0j(t0)

G
,

(14) y0j(t)

G
=

∫ t

t0

µ2(τ)(t− τ)dτ +

∫ t

t0

fjy(τ)(t− τ)dτ +
ẏ0j(t0)

G
+

y0j(t0)

G
,

z0j(t)

G
=

∫ t

t0

µ3(τ)(t− τ)dτ +

∫ t

t0

fjz(τ)(t− τ)dτ +
ż0j(t0)

G
+

z0j(t0)

G
,

where

µ1(t) =
n−1∑

i=1,i̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)x, µ2(t) =

n−1∑
i=1,i̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)y,

µ3(t) =
n−1∑

i=1,i ̸=j

mi

|r⃗oi − r⃗oj|3
(r⃗0i − r⃗0j)z

.

76



Let us represent each equation of system (14) in the form

(15)
∫ t

t0

(t− τ)fjk(τ)dτ = ujk(t), k = 1, 2, 3,

where

uj1(t) =
x0j(t)

G
−
∫ t

t0

µ1(τ)(t− τ)dτ − ẋ0j(t0)

G
− x0j(t0)

G
,

uj2(t) =
y0j(t)

G
−

∫ t

t0

µ2(τ)(t− τ)dτ − ẏ0j(t0)

G
− y0j(t0)

G
,

uj3(t) =
z0j(t)

G
−
∫ t

t0

µ3(τ)(t− τ)dτ − ż0j(t0)

G
− z0j(t0)

G
.

Equations ( 15) are Voltera integral equations of the first kind with respect to the
unknown functions fjk(t), k = 1, 2, 3.

We can restore the vector force f⃗j(t) exerted by the mass mn of mass mj up to a
constant factor if the solutions of equations ( 15) fjk(t), k = 1, 2, 3 were obtained.

We obtain the force f⃗l(t) acting on the mass ml from the mass mn if we solved similar
equations of the type (15) for the mass with the number l determined (up to a constant
factor). The intersection of the lines of action f⃗j(t) and f⃗l(t) gives the position of mass
mn in space (in the chosen inertial system).

As is easily seen that the functions ujk(t) are defined from astronomical observations
r⃗0l(t), i = 1, 2, , ..(n− 1) of the motions of the masses mj(t), j = 1, 2, , ..(n− 1) with some
error.

Right parts of equation (15) are continuous functions which belong to a normed
space C[t0, T ], where [t0, T ] is a period of time in which the movement of mass mn is
investigated.

Solutions of equation (15) in the physical sense must also belong to C[t0, T ], that is
fjk(t) ∈ C[t0, T ] . Under these conditions, the solution of equations (15) is ill-posed
problem [2].

In the equations of motion (7) coefficients mi(i = 1, 2, .., (n − 1)), G are determined
from astronomical observations and experimental studies, and so these values are
given approximate. It assumes that each coefficient in equations (7) can take values
in some interval:

(16) 0 < m0
i ≤ mi ≤ mup

i , i = 1, (n− 1), i ̸= j, 0 < G0 ≤ G ≤ Gup.

Let us introduce the following notations

p⃗ = (b1, b2, .., bn−1)
∗, R⃗(t) = (r01(t), r02(t), , .., r0(n−1)(t), )

∗,
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where b1 = m1, ..., bj−1 = mj−1, bj = mj+1, ..., bn−2 = mn−1, bn−1 = 1
G
; (.)∗ is the sign of

transposition.
Inequalities (16) define a closed area D̄ in (n−1) - dimensional Evclide’s space Rn−1.

Set of vector functions R⃗(t) form a linear function space Cn[t0, T ], which can introduce
the norm as follows [2]:

∥ R⃗1 − R⃗2 ∥Cn[t0,T ]= max
1≤i≤n

|r1,i − r2,i|,

where
rki =∥ rki ∥C[t0,T ]= max

t∈C[t0,T ]
|rk0i(t)|, R⃗k(t) = (rk01, r

k
02, .., r

k
0n)

∗, k = 1, 2.

Let us transform the equation (15) to the form

(17) Ãf = u = BpR⃗,

whereBp is a bounded linear operator carrying elements of the functional spaceCn[t0, T ]

into C[t0, T ].
The operator Bp depends on the specific values of the parameters of the mathe-

matical model of the process, i.e. from p , so assume that the operator Bp is given
approximate.

We denote R⃗ex(t), uex respectively the exact vector function R⃗(t) , and the exact func-
tion u of the right-hand side of equation (17).

It is suppose that instead R⃗ex(t) in (17) is given an approximate initial datum R⃗δ(t) =

(r̃o1(t), r̃o2(t), , .., r̃on(t), )
∗ for which the inequality

∥ R⃗ex(t)− R⃗δ(t) ∥Cn[t0,T ]≤ δ

is valid.
These data R⃗δ(t) will correspond the approximate value ũ of the right-hand part of

equation (17) (ũ = BpR⃗δ).
We estimate the deviation function ũ(t) from uex(t):

(18) ∥ ũ(t)− uex(t) ∥C[t0,T ]=∥ BpR⃗δ −BexR⃗ex ∥C[t0,T ]≤ b0δ + d1 ∥ R⃗δ ∥= δ0,

where
b0 = sup

p⃗∈D̄
∥ R⃗p ∥; d1 ≥ sup

p⃗∈D̄
∥ Bp⃗ −Bex ∥;

Bex is exact operator in (3).
As the real process possible to describe only approximately by mathematical meth-

ods, we will also assume that the exact operator Aex in equation (1) (if Aex is linear)
differs from of the approximate operator Ã on value

h ≥∥ Ã− Aex ∥Z→U .
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In this case it is possible to use an algorithm for solving inverse problems with ap-
proximate operator Ã [2], [8], [9].

However, the assumption of linearity exact operators Aex, Bex as well as the infor-
mation about the values h, d1 are not justified in many cases.

Consider the set of possible solutions of equation (17) with fixed operators Ã, Bp, p ∈
D̄:

(19) Qp⃗,δ = {f :∥ Ãf −Bp⃗R⃗δ ∥C[t0,T ]≤∥ Bp⃗ ∥ δ}.

Suppose that f̃ is a solution of following extreme problem

(20) Ω[f̃ ] = inf
f∈Qp⃗,δ

∩
Z1

Ω[f ].

According main hypothesis the inequality for function f̃ is valid

(21) Ω[f̃ ] ≤ Ω[fex], Aexfex = BexR⃗ex.

If f̃ ̸= 0 then we can say with confidence that there is a real celestial body mn. It is
clear that the function f̃ may differ significantly from the exact solution fex.

If f̃ ≡ 0 then we can say nonetheless that possible exists a real celestial body mn as
operator Bp⃗ is fixed. It is possible that exists such operator Bp⃗1 among set of operators
for which the function f̃ ̸= 0.

We consider now the union of sets:

(22) Qun =
∪
p⃗∈D̄

Qp⃗,δ.

Tikhonov regularization method [2] with a stabilizing functional

(23) Ω[f ] = ∥f∥2W 1
2 [t0,T ] =

∫ T

t0

[q0f
2 + q1ḟ

2]dτ, q0 ≥ 0, q1 > 0

is used to solve the equation [2].
Since Qun ⊂ Qδ0, then using of more narrow set Qun of possible solutions of equation

(17) instead of set Qδ0 will provide a more informative solution. The proposed approach
is a continuation of works [15], [16], [17].

We denote fun as the solution of following problem:

(24) Ω[fun] = inf
f∈Qun

Ω[f ].

To implement such an approach must be able to distinguish among the operators
Bp of an operator Bp0 such that if the condition

(25) Ω[f1] = Ω[Ã−1BpR⃗],Ω[f2] = Ω[Ã−1Bp0R⃗],
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then the inequality

(26) Ω[f1] = ∥f1∥2W 1
2 [t0,T ] ≥ Ω[f2] = ∥f2∥2W 1

2 [t0,T ]

is valid for any possible R⃗ and anyone p ∈ D̄; Ã−1 is an inverse operator to Ã.
In [15], [16] approximate operator Bp0 on the left side of equation (17) with the

”opposite” properties named ”least rude”. Therefore, the operator Bp0 will be called
”the most rude”.

If the operator Bp0 exists and is uniquely determined, then the problem of finding
the greatest lower bound of the functional Ω[f ] on the set Qun will have a solution that
coincides with the solution of the simpler problem [15], [17]: find the element f0 ∈ Qp0,δ

for which the equality

(27) Ω[fun] = inf
f∈Qp0,δ

Ω[f ].

is valid.
The problem (27) has a solution for any p0 ∈ D̄ and δ as shown in [2].

Theorem 2. Crudest operator Bp0 in equation (17) exists, is uniquely determined and
corresponds to the vector

p0 = (m0
1,m

0
2, ...,m

0
j−1,m

0
j+1, ...,m

0
n−1, 1/G

up)∗.

Proof. Let R⃗(t) be a realization of astronomical observations. Consider the prob-
lem of determining the exact lower bound functional Ω[f ] = Ω[Ã−1BpR⃗] in area D̄ a
fixed R⃗(t). Extreme of continuous functional Ω[f ] attained on a vector p0 ∈ D̄ by the
Weierstrass theorem.

When any p ∈ D̄ function Ω[Ã−1BpR⃗] is strictly positive since Ω[f ] = ∥f∥2
W 1

2 [t0,T ]
> 0

by f ̸= 0,∀p ∈ D̄.
Function Ω[f ] for fixed R⃗(t) can be represented as a quadratic form

Ω[f ] = (Cp, p) = Ω[p],

where C is a real symmetric matrix C = (cik)
n
k,i=1.

Matrix coefficients C are given by:

cik =

∫ T

t0

(q0aij(t)akj(t) + q1
daij
dt

dakj
dt

), i, k = 1, 2, ..(n− 1).
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Since Ω[f ] > 0 for any p ∈ D̄ the inequalities Silvester are valid:

c11 > 0,

∣∣∣∣∣ c11 c12

c21 c22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣∣∣

c11 . . . c1,n−1

. . . . .

. . . . .

. . . . .

cn−1,1 . . .cn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Necessary and sufficient conditions for strong convexity of Ω[p⃗] on D̄ is the following
[19]:

(28)
(n−1)∑
i,k=1

∂2Ω[p]

∂bi∂bk
ξiξk > 0,

for any ξ = (ξ1, ξ2, ..., ξn−1)
∗ ∈ En−1 and any p⃗ ∈ D̄.

Quadratic form (Cp, p) is positive as

C̄ =

(
∂2Ω[p]

∂bi∂bk
ξiξk

)(n−1)

i,k=1

= (c̄ik)
(n−1)
i,k=1 = (2cik)

(n−1)
i,k=1 .

Therefore Ω[p⃗] is strongly convex on D̄.
As in [2] that Ω[p⃗] achieves the greatest lower bound at a single point

p0 = (m0
1,m

0
2, ...,m

0
j−1,m

0
j+1, ...,m

0
n−1, G

up−1)∗ ∈ D̄

by any R⃗(t). The theorem is proved.
If f̃ ≡ 0 then we can say nonetheless that possible exists a real celestial body mn as

operator Bp⃗ is fixed. It is possible that exists such operator Bp⃗1 among set of operators
for which the function f̃ ̸= 0.

Suppose that among the operators Bp we can select some operator Bp1 for which
conditions is valid

(29) Ω[f1] = Ω[Ã−1BpR⃗],Ω[f2] = Ω[Ã−1Bp1R⃗],

(30) Ω[f1] = ∥f1∥2W 1
2 [t0,T ] ≤ Ω[f2] = ∥f2∥2W 1

2 [t0,T ]

is valid for any R⃗ and any p ∈ D̄; Ã−1 is inverse operator to Ã.
Operator Bp1 in equation (17) we will be name as ”special maximal operator” in sense

of execution of inequality (30).
If the operator Bp1 exists and is uniquely determined, then the problem of finding

the greatest lower bound of the functional Ω[f ] on the set Qun will have a solution that
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coincides with the solution of the simpler problem [17]: find the element f 1 ∈ Qp1,δ for
which the equality

(31) Ω[fun] = sup
p⃗∈D̄

inf
f∈Qp0,δ

∩
Z1

Ω[f ].

is valid.
The problem (31) has a solution for any p1 ∈ D̄ and δ as the conditions of Theorem

1. are executed.
It is evident that following inequality is valid

(32) Ω[fT ] ≥ Ω[f1] ≥ Ω[fα,p] ≥ Ω[f0] ≥ Ω[fun].

Theorem 3. Special operator Bp1 in equation (17) exists, is uniquely determined and
corresponds to the vector p1 = (mup

1 ,mup
2 , . . . ,mup

j−1,m
up
j+1, . . . ,m

up
n−1, 1/G

0)∗.

The proof of Theorem 3. is executing similar as Theorem 2.
The estimate obtained leads to the conclusion about the existence with guarantee

unknown celestial body (if f 1 ̸= 0) and the conclusion of his absence (if f 1 ̸= 0) but
with no guarantee. In the second case, the existence of a celestial body is also possible
if the refinement of the structure of operators Ã, Bp1 will made.

Other variants are possible estimates of exact solutions.

6. Identification of moment of technological resistance on rolling mill

As the second of measurement’s inverse problems the problem of definition of the
moment of technological resistance on the rolling mill is considered [11], [20].

The important characteristic of process of rolled metal is the moment of technolog-
ical resistance on the working barrels of the rolling mill.

The curve of change of technological resistance moment which was obtained by help
of plasticity theory was shown on Figure 1. as dotted line.

In paper the problem of definition of the technological resistance moments by a
method of identification is considered [11], [20], i.e. method of indirect measurements:
on basis of results of measurement of fluctuations of the moments in the main mechan-
ical line of the rolling mill it is necessary to determine the real character of change
of the moments of technological resistance. In this case it is necessary to take into
account an error of the mathematical description of process of fluctuations.

Mathematical model of motion of the main mechanical line of the rolling mill of
sheets was chosen in form:
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Figure 1. Graphics of moments which are acting to worked barrels of list
rolling mill at experiment.

M̈12 + a12M12 + a13M23 + a14M24 = b1Ju,

(33) M̈23 + a23M23 + a22M12 + a24M24 = b2M
u
rol,

M̈24 + a34M24 + a32M13 + a33M23 = b3M
l
rol.

where functions Ju(t),M23(t),M24(t) were obtained by experiment [11]. The integral e-
quations such as (17) with the inexact operators are received for definition of unknown
functions Mu

rol,M
l
rol.

The regularization method is used for inverse problem solution of technological re-
sistance moment identification [2]. The initial problem was replaced with the solution
of following extreme problem [20]:

(34) Ω[z∗] = inf
z∈Qδ

Ω[z],

where Qδ = z : z ∈ Z1, ∥Ãz − ũ∥U ≤ δ, ∥uex − ũ∥U ≤ δ, δ is inaccuracy of initial data, uex

is exact initial data.
The functional of kind

(35) Ω[z] =

∫ T

0

ż2dt
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was chosen as stabilizing functional.
The solutions of equation (17) with the exact operators were obtained by regulariza-

tion method. Functions Mu
rol,M

l
rol are shown on Fig.1 (continuous lines).

On basic of main hypothesis we can take the conclusion that exact solutions have
more oscillating characters of solutions as for regularized solutions the following in-
equalities are valid:

(36) Ω[Mu
rol,ex] =

∫ T

0

(
Ṁu

rol, ex

)2

dt ≥ Ω[Mu
rol] =

∫ T

0

(
Ṁu

rol

)2

dt,

(37) Ω[M l
rol,ex] =

∫ T

0

(
Ṁ l

rol,ex

)2

dt ≥ Ω[M l
rol] =

∫ T

0

(
Ṁ l

rol

)2

dt,

where Mu
rol,ex,M

l
rol,ex are real moments of technological resistance on working barrels

of rolling mill of sheets.
Thus as a result of an estimations of the exact solutions the useful information

concerning the real moments of technological resistance was received which cannot
have character of change as shown on Fig.1 (dotted line).

7. Conclusion.

One of the possible approach for solving inverse problems of measurement when
there is no exact initial information is considered. The main hypothesis for estimation
of exact solution of measurement inverse problems is suggested. The conditions of
existence of estimations were obtained. As the examples two practical problems were
investigated: inverse problem of astrodynamics and identification of external moment
loads to working barrels of rolling mill of sheets.
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