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1. Introduction
Fuzzy integral equations are important for studying and solving a large proportion

of the problems in many topics in applied mathematics, in particular in relation to
physics, geographic, medical, biology, etc. Usually in many applications some of the
parameters in our problems are represented by fuzzy number rather than crisp, and
hence it is important to develop mathematical models and numerical procedures that
would appropriately treat general fuzzy integral equations and solve them.
The concept of integration of fuzzy functions was first introduced by Dubois and Prade
[6]. Alternative approaches were later suggested by Goetschel and Voxman [13], Kale-
va [12], Nanda [14] and others. While Goetschel and Voxman [13] preferred a Rimann
integral type approach, Kalva [12] chose to define the integral of fuzzy function, using
the Lebesgue type concept for integration. One of the first applications of fuzzy inte-
gration was given by Wu and Ma [18] who investigated the Fuzzy Fredholm integral
equation of second kind (FFIE-2). This work which established the existence of a u-
nique solution to (FFIE-2) was followed by other work on (FFIE-2) [8] where a fuzzy
integral equation replaced an original fuzzy differential equation.
The fuzzy Laplace transform method is practically the most important operational
method. The fuzzy Laplace transform method is a powerful technique that can be used
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for solving initial value problems and integral equations as well [9, 15 , 16]. Abel inte-
gral equation occurs in many branches of scientific fields [17], such as microscopy, seis-
mology, radio astronomy, electron emission, atomic scattering, radar ranging, plasma
diagnostics, X-ray radiography, and optical fiber evaluation. In this paper, we intro-
duced Abel fuzzy integral equations. Linear and nonlinear Abel fuzzy integral equa-
tions are transformed in such a manner that the fuzzy Laplace transform method can
be applied.
The structure of paper is organized as follows: In Section 2, some basic definitions and
results which will be used later are brought. In Section 3, we will review fuzzy Laplace
transform. In Section 4, we introduce Abel fuzzy integral equations. In section 5, we
apply Laplace transform method for solving Abel fuzzy integral equations, then the
proposed method is implemented for solving three illustrative examples in Section 6
and finally, conclusion is drawn in Section 7.

2. Preliminaries

We now recall some definitions needed through the paper.
Definition 1. A fuzzy number is a fuzzy set u : R1 → [0, 1] which satisfies following
conditions
a: u is upper semicontinuous.
b: u(x) = 0 outside some interval [c, d].
c: There are real numbers a and b, c ≤ a ≤ b ≤ d, for which
i) u(x) is monotonically increasing on [c, a],

ii) u(x) is monotonically decreasing on [b, d],

iii) u(x) = 1 for a ≤ x ≤ b.
The set of all fuzzy numbers, as given by definition (1) is denoted byE1. An alternative
definition or parametric form of a fuzzy number which yields the same E1 is given by
Kaleva [12].

Definition 2. A fuzzy number u is a pair (u(r), u(r)) of functions u(r) and u(r),
0 ≤ r ≤ 1, satisfying the following requirements:
a: u(r) is a bounded monotonic increasing left continuous function,
b: u(r) is a bounded monotonic decreasing left continuous function,
c: u(r) ≤ u(r) , 0 ≤ r ≤ 1.
For arbitrary u = (u(r), u(r)) , v = (v(r), v(r)) and k > 0, we define addition (u+ v) and
multiplication by k as:

59



(1) (u+ v)(r) = u(r) + v(r),

(u+ v)(r) = u(r) + v(r),

(2) (ku)(r) = ku(r),

(ku)(r) = ku(r).

The collection of all the fuzzy numbers with addition and multiplication as defined
by Eqs. (1) and (2) is denoted by E1 and is u convex cone. it can be shown that Eqs.
(1) and (2) are equivalent to the addition and multiplication as defined by using the
α − cut approach [8] and the extension principles [14]. We will next define the fuzzy
function notation and a metric D in E1 [13].
Definition 3. For arbitrary numbers u = (u(r), u(r)) and v = (v(r), v(r))

D(u, v) = max{ sup
0≤r≤1

|u(r)− v(r)|, sup
0≤r≤1

|u(r)− v(r)|},

is the distance between u and v [13].
Definition 4. Suppose f : [a, b] → E1 for each partition p = {x0, x1, · · · , xn} of [a, b] and
for arbitrary εi; xi−1 ≤ εi ≤ xi, 1 ≤ i ≤ n, take

λ = max
1≤i≤n

|xi − xi−1| ,

and Rp =
∑n

i=1 f(εi)(xi − xi−1). The definition integral of f(x) over [a, b] is

∫ b

a

f(x)dx = lim
λ→0

Rp ,

provided that this limit exists in the metric D.
If the fuzzy function f(x) is continuous in the metric D, the definite integral exists
[13]. Furthermore,

(3) (
∫ b
a
f(x, r)dx) =

∫ b
a
f(x, r)dx, (

∫ b
a
f(x, r)dx) =

∫ b
a
f(x, r)dx,

where (f(x, r), f(x, r)) is the parametric form of f(x). It should be noted that the fuzzy
integral can be also defined using the Lebesgue-type approach [12]. However, if f(x)

is continuous, both approaches yield the same value. Moreover, the representation of
the fuzzy integral using Eq. (2) is more convenient for numerical calculations. More
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details about the properties of the fuzzy integral are given in [12, 13].
Lemma 1 [7]. If f and g : [a, b] ⊆ R → E1 are fuzzy continuous function, then the
function F : [a, b]→ R+ by F (x) = D(f(x), g(x)) is continuous on [a, b], and

(4) D

(∫ b

a

f(x)dx,

∫ b

a

g(x)dx

)
≤
∫ b

a

D(f(x), g(x))dx.

Theorem 1 [18]. Let f(x) be a fuzzy value function on [a,∞) and it is represented
by (f(x, r), f(x, r)). For any fixed r ∈ [0, 1], assume f(x, r) and f(x, r) are Riemann-
integrable on [a, b] for every b > a and assume there are two positive M(r) and M(r)

such that
∫ b
a
|f(x, r)|dx 6 M(r) and

∫ b
a
|f(x, r)|dx 6 M(r) for every b > a. Then f(x)

is improper fuzzy Riemann-integrable on [a,∞) and the improper fuzzy Riemann-
integral is a fuzzy number. Further, we have:

(5)
∫ ∞
a

f(x)dx =

(∫ ∞
a

f(x, r)dx,

∫ ∞
a

f(x, r)dx

)
.

Proposition 1 [19]. If each of f(x) and g(x) is fuzzy value function and fuzzy Riemann
integrable on [a,∞) the f(x)

⊕
g(x) is fuzzy Riemann-integrable on [a,∞). Moreover,

we have

(6)
∫
I

(f(x)⊕ g(x))dx =

∫
I

f(x)dx⊕
∫
I

g(x)dx.

It is well-known that the H-derivative (differentiability in the sense of Hukuhara) for
fuzzy mappings was initially introduced by Puri and Ralescu (1983) and it is based in
the H-difference of sets, as follows.
Definition 5. Suppose x, y ∈ E. If there exists z ∈ E such that x = y ⊕ z, then z is
called the H-difference of x and y, and it is denoted by x−h y.
In this paper, the sing ”−h” always stands for H-difference and also note that x−h y 6=
x	 y. In this paper we consider the following definition which was introduced Bede et
al. [3].
Definition 6. Suppose f : (a, b) → E and x0 ∈ (a, b). We say that f is strongly general-
ized differential at x0 (Bede et al. [4]) if there exists an element f ′(x0) ∈ E, such that:
a) for all h > 0 sufficiently small, ∃f(x0 +h)−h f(x0), ∃f(x0)−h f(x0−h) and the limits
(in the metric D)

lim
h→0

f(x0 + h)−h f(x0)

h
= lim

h→0

f(x0)−h f(x0 − h)

h
= f ′(x0)

or
b) for all h > 0 sufficiently small, ∃f(x0)−h f(x0 +h), ∃f(x0−h)−h f(x0) and the limits
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(in the metric D)

lim
h→0

f(x0)−h f(x0 + h)

−h
= lim

h→0

f(x0 − h)−h f(x0)

−h
= f ′(x0)

or
c)for all h > 0 sufficiently small, ∃f(x0 + h)−h f(x0), ∃f(x0 − h)−h f(x0) and the limits
(in the metric D)

lim
h→0

f(x0 + h)−h f(x0)

h
= lim

h→0

f(x0 − h)−h f(x0)

−h
= f ′(x0)

or
d))for all h > 0 sufficiently small, ∃f(x0)−h f(x0 +h), ∃f(x0)−h f(x0−h) and the limits
(in the metric D)

lim
h→0

f(x0)−h f(x0 + h)

−h
= lim

h→0

f(x0)−h f(x0 − h)

h
= f ′(x0)

(h and −h at denominators mean 1
h

and −1
h

, respectively )

3. Fuzzy Laplace transform

Definition 6. Let f(x) be continuous fuzzy-value function. Suppose that f(x)� e−px

is improper fuzzy Riemann integrable on [0,∞), then
∫∞
0
f(x)� e−pxdx is called fuzzy

Laplace transforms and is denoted as:

L[f(x)] =

∫ ∞
0

f(x)� e−pxdx (p > 0 and integer).

From Theorem 1, we have:∫ ∞
0

f(x)� e−pxdx =

(∫ ∞
0

f(x)� e−pxdx,
∫ ∞
0

f(x)� e−pxdx)

)
,

also by using the definition of classical Laplace transform:

l[f(x, r)] =

∫ ∞
0

f(x, r)e−pxdx,

and
l[f(x, r)] =

∫ ∞
0

f(x, r)e−pxdx,

then, we follow:
L[f(x)] = (l[f(x, r), l[f(x, r)]).
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Theorem 2 [16]. Let f ′(x) be an integrable fuzzy-valued function and f(x) is the
primitive of f ′(x) on [0,∞). Then

L[f ′(x)] = p� L[f(x)]−h f(0) ,

where f is (a)-differentiable or

L[f ′(x)] = (−f(0)−h (−p� L[f(x)])) ,

where f is (b)-differentiable.
Theorem 3 [16]. Let f(x) and g(x) be continuous fuzzy-valued functions suppose that
c1, c2 are constant, then

L[(c1 � f(x))⊕ (c2 � g(x))] = (c1 � L[f(x)])⊕ (c2 � L[g(x)]).

Theorem 4 [16]. Let f is continuous fuzzy-value function and L[f(x)] = F (p), then
L[eax � f(x)] = F (p− a), where eax is real value function and p− a > 0.

4. Abel fuzzy integral equations

Some problems of mathematical physics are describe in terms of integral equations
of the first kind. An important example is the Abel integral equation [1, 2]

(7) f(x) =

∫ x

a

u(t)√
x− t

dt, a ≤ x ≤ b,

where the kernel k(x, t) = 1√
x−t is singular in that k(x, t)→∞ as t→ x.

By Eq. (7), we see that Abel integral equations are weakly singular Volteraa integral
equations of the first kind.
Abel generalized his original problem by introducing the singular integral equation

(8) f(x) =

∫ x

a

u(t)

(x− t)α
dt, 0 < α < 1,

know as the Generalized Abel integral equation where α are know constants such that
0 < α < 1, f(x) is a predetermined data function and u(x) is the solution that will be
determined. The Abel’s problem discussed above is a special case of the generalized
equation where α = 1

2
. The expression (x − t)−α is called the kernel of Abel integral

equation, or simply Abel kernel. If f(x) is a crisp function then the solutions of Eq. (7)
are crisp as well.
However, if f(x) is a fuzzy function these equations may only possess fuzzy solutions.
The fuzzy integral equation which is discussed in this paper is the Abel fuzzy integral
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equation. Now, we introduce the parametric forms of f(x), then the parametric form
of fuzzy Able integral equation is as follows:

(9) (f(x, r), f(x, r)) =

(∫ x

0

u(t, r)√
(x− t)

dt,

∫ x

0

u(t, r)√
(x− t)

dt

)
,

for each 0 ≤ r ≤ 1.

We introduce general Abel fuzzy integral equation as follows

(10) (f(x, r), f(x, r)) =

(∫ x

0

u(t, r)

(x− t)α
dt,

∫ x

0

u(t, r)

(x− t)α
dt

)
,

know as the generalized Abel fuzzy integral equation where α are know constants
such that 0 < α < 1, f(x) = (f(x, r), f(x, r)) is a predetermined data function and
u(x) = (u(x, r), u(x, r)) is the solution that will be determined.
The standard form of the nonlinear Abel fuzzy integral equation is given by

(11) (f(x, r), f(x, r)) =

(∫ x

0

F (u(t, r))√
x− t

dt,

∫ x

0

F (u(t, r))√
x− t

dt

)
,

where the function (f(x, r), f(x, r)) is a given real-valued function, and (F (u(x, r)), F (u(x, r)))

is a nonlinear function of (u(x, r), u(x, r)). Recall that the unknown function (u(x, r), u(x, r))

occurs only inside the integral sign for the Abel fuzzy integral equation (11).

5. The Laplace transform method for solving Abel fuzzy integral equations

The Abel fuzzy integral equation is form Eq. (9). Then if we taking Laplace trans-
form of both sides of Eq. (9). leads to

(12) L[f(x, r), f(x, r)] = L[(u(t, r), u(t, r))]L(x(
−1
2
)) for all 0 ≤ r ≤ 1 ,

or equivalently

(13) (F (s, r), F (s, r)) =
Γ(1

2
)

s
1
2

(U(s, r), U(s, r)) =

√
π

s
1
2

(U(s, r), U(s, r)) ,

that gives

(14) (U(s, r), U(s, r)) =
s

1
2

√
π

(F (s, r), F (s, r)) ,

where Γ is the gamma function, and Γ(1
2
) =
√
π. The last equation (14) can be rewritten

as:

(15) (U(s, r), U(s, r)) = (
s

π
(
√
πs−

1
2F (s, r)),

s

π
(
√
πs−

1
2F (s, r))) ,

which can be rewritten by:

(16) L[(U(x, r), U(x, r))] =
s

π
L[(w(x, r), w(x, r))] ,
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where

(17) (w(x, r), w(x, r)) = (

∫ x

0

(x− t)−
1
2f(t, r)dt,

∫ x

0

(x− t)−
1
2f(t, r)dt) .

Using the fact

(18) L[(w′(x, r), w′(x, r))] = (sL[w(x, r)− w(0, r)], sL[w(x, r)− w(0, r)])

into (16) we obtain

(19) L[(u(x, r), u(x, r))] =
1

π
L[(w′(x, r), w′(x, r))] .

Applying L−1 to both sides of (19) gives the formula

(20) (u(x, r), u(x, r)) = (
1

π

d

dx

∫ x

0

f(t, r)
√
x− t

dt,
1

π

d

dx

∫ x

0

f(t, r)√
x− t

dt) ,

that will used for the determination of the solution (u(x, r), u(x, r)).
To determine a formula that will be used for solving the generalized Abel fuzzy integral
equation (10), we will apply the Laplace transform method in a parallel manner to the
approach followed before. Taking Laplace transforms of both sides of Eq. (10), leads
to:

(21) L[(f(x, r), f(x, r)] = L[(u(x, r), u(x, r))]L[x−α] ,

or equivalently

(22) (F (s, r), F (s, r)) = (
Γ(1− α)

s1−α
U(s, r),

Γ(1− α)

s1−α
U(s, r)) ,

that gives

(23) (U(s, r), U(s, r)) = (
s1−α

Γ(1− α)
F (s, r),

s1−α

Γ(1− α)
F (s, r)) .

The Eq. (23) can be rewritten as:

(24) L[(u(x, r), u(x, r))] =
s

Γ(α)Γ(1− α)
L[(w(x, r), w(x, r))] ,

where

(25) (w(x, r), w(x, r)) = (

∫ x

0

1

(x− t)α−1
f(t, r)dt,

∫ x

0

1

(x− t)α−1
f(t, r)dt) .

Using Eq. (18) and

(26) Γ(α)Γ(1− α) =
π

sin(απ)
,

into (24) we obtain

(27) L[(u(x, r), u(x, r))] =
sin(απ)

π
L[(w′(x, r), w′(x, r))] .
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Applying L−1 to both sides of (27) gives the formula

(28) (u(x, r), u(x, r)) =

(
sin(απ)

π

d

dx

∫ x

0

f(t, r)

(x− t)1−α
dt ,

sin(απ)

π

d

dx

∫ x

0

f(t, r)

(x− t)1−α
dt

)
.

Integrating the integral at the right side of Eq. (28) and differentiating the result we
obtain the more suitable formula
(29)
(u(x, r), u(x, r)) =

(
sin(απ)

π

(
f(0, r)

x1−α
+

∫ x

0

f ′(t, r)

(x− t)1−α
dt

)
,
sin(απ)

π

(
f(0, r)

x1−α
+

∫ x

0

f ′(t, r)

(x− t)1−α
dt

))
,

for all 0 < α < 1.
To determine a solution for the nonlinear Abel fuzzy integral equation (11), we first
convert it to a linear Abel fuzzy integral equation of the form:

(30) (f(x, r), f(x, r)) =

(∫ x

0

v(t, r)√
x− t

dt,

∫ x

0

v(t, r)√
x− t

dt

)
,

by using the transformation

(31) (v(x, r), v(x, r)) = (F (u(x, r)), F (u(x, r)) ,

where (F (u(x, r)), F (u(x, r)) is invertible, i.e (F−1(u(x, r)), F−1(u(x, r)) exists. This in
turn means that

(32) (u(x, r)), u(x, r)) = (F−1(v(x, r)), F−1(v(x, r)) .

Taking Laplace transforms of both sides of (30) leads to

L[(f(x, r), f(x, r))] = L[(v(x, r), v(x, r))]L[x−
1
2 ] ,

or equivalently

(33) (F (s, r), F (s, r)) = (V (s, r)
Γ(1

2
)

s
1
2

, V (s, r)
Γ(1

2
)

s
1
2

) = (V (s, r)

√
π

s
1
2

, V (s, r)

√
π

s
1
2

) ,

that gives

(34) (V (s, r), V (s, r)) = (
s

1
2

√
π
F (s, r),

s
1
2

√
π
F (s, r)) ,

The last equation (34) can be rewritten as

(35) (V (s, r), V (s, r)) =
( s
π

(
√
πs−

1
2F (s, r)),

s

π

√
π(s−

1
2F (s, r))

)
,

which can be rewritten by

(36) L[(v(x, r), v(x, r))] =
s

π
L[(w(x, r), w(x, r))] ,
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where

(37) (w(x, r), w(x, r)) = (

∫ x

0

(x− t)−
1
2f(t, r)dt,

∫ x

0

(x− t)−
1
2f(t, r)dt) .

Using the fact

(38) L[(w′(x, r), w′(x, r))] = (sL[w(x, r)− w(0, r)], sL[w(x, r)− w(0, r)])

into (36) we obtain

(39) L[(v(x, r), v(x, r))] =
1

π
L[(w′(x, r), w′(x, r))] .

Applying L−1 to both sides of (39) gives the formula

(40) (v(x, r), v(x, r)) = (
1

π

d

dx

∫ x

0

f(t, r)
√
x− t

dt,
1

π

d

dx

∫ x

0

f(t, r)√
x− t

dt) ,

that will be used for the determination of the solution (v(x, r), v(x, r)). Having deter-
mined (v(x, r), v(x, r)), then the solution (u(x, r), u(x, r)) of (11) follows immediately by
using

(41) (u(x, r), u(x, r)) = (F−1(u(x, r), F−1(u(x, r)) .

Notice that the formulas (20, 28, 29, 40) will be used for solving Abel fuzzy integral
equation, and this are not necessary to use fuzzy Laplace transform method for each
problem. Abel fuzzy problem given by (9, 10, 11) can be solved directly by using the for-
mulas (20, 28, 29, 40) where the unknown function (u(x, r), u(x, r)) has been replaced
by the given function (f(x, r), f(x, r)).

6. Example

Here, we consider three examples to illustrate the Fuzzy Laplace transforms meth-
ods for solving Abel fuzzy integral equations.
Example 1. Consider the following Abel fuzzy integral equation

(
4

3
rx

3
2 ,

4

3
(2− r)x

3
2 ) =

∫ x

0

u(t, r)√
x− t

dt .

The exact solution in this case is given by

(u(x, r), u(x, r)) = (rx, (2− r)x) and 0 ≤ r ≤ 1 .

Notice that α = 1
2

and (f(x, r), f(x, r)) = (4
3
rx

3
2 , 4

3
(2− r)x 3

2 ), by using Eq. (20), gives:

(u(x, r), u(x, r)) = (
1

π

d

dx

(∫ x

0

4
3
rt

3
2

√
x− t

dt

)
,

1

π

d

dx

(∫ x

0

4
3
(2− r)t 32
√
x− t

dt

)
) ,
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then

(u(x, r), u(x, r)) = (
4r

3π

d

dx

(∫ x

0

t
3
2

√
x− t

dt

)
,
4(2− r)

3π

d

dx

(∫ x

0

t
3
2

√
x− t

dt

)
) ,

using the fact ∫ x

0

t
3
2

√
x− t

dt =
3

8
πx2 ,

we have
(u(x, r), u(x, r)) = (

4r

3π

d

dx

(
3

8
πx2
)
,
4(2− r)

3π

d

dx

(
3

8
πx2
)

) ,

then gives:
(u(x, r), u(x, r)) = (rx, (2− r)x) .

Example 2. Consider the following Abel fuzzy integral equation

((r2 + 2r)x, (6− 3r3)x) =

∫ x

0

u(t, r)

(x− t) 2
3

dt ,

The exact solution in this case is given by

(u(x, r), u(x, r)) = (
3
√

3(r2 + 2r)

4π
x

2
3 ,

3
√

3(6− 3r3)

4π
x

2
3 ) and 0 ≤ r ≤ 1 .

Notice that α = 2
3

and (f(x, r), f(x, r)) = ((r5 + 2r)x, (6− r3)x), by using Eq. (28), gives:

(u(x, r), u(x, r)) = (
sin(2

3
π)

π

d

dx

(∫ x

0

(r2 + 2r)t

(x− t) 1
3

dt

)
,
sin(2

3
π)

π

d

dx

(∫ x

0

(6− 3r3)t

(x− t) 1
3

dt

)
) ,

then

(u(x, r), u(x, r)) = (

√
3(r2 + 2r)

2π

d

dx

(∫ x

0

t

(x− t) 1
3

dt

)
,

√
3(6− 3r3)

2π

d

dx

(∫ x

0

t

(x− t) 1
3

dt

)
) ,

using the fact ∫ x

0

t

(x− t) 1
3

dt =
9

10
x

5
3 ,

we have

(u(x, r), u(x, r)) = (

√
3(r2 + 2r)

2π

d

dx

(
9

10
x

5
3

)
,

√
3(6− 3r3)

2π

d

dx

(
9

10
x

5
3

)
) ,

then gives:

(u(x, r), u(x, r)) = (
3
√

3(r2 + 2r)

4π
x

2
3 ,

3
√

3(6− 3r3)

4π
x

2
3 ) .

Example 3. Consider the following nonlinear Abel fuzzy integral equation

(42) (
3

16
rt

3
2 ,

3

16
(2− r)x

3
2 ) =

∫ x

0

u3(x, r)√
x− t

dt ,
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The exact solution in this case is given by

(u(x, r), u(x, r)) = (
1

4
3
√

9rx,
1

4
3
√

9(2− r)x) .

Assume u2(x, r) is invertible. The transformation

(43) v(x, r) = u3(x, r) , u(x, r) = 3
√
v(x, r) ,

carries (42) into

(44) (
3

16
rx

3
2 ,

3

16
(2− r)x

3
2 ) =

∫ x

0

v(t, r)√
x− t

dt .

Substituting (f(x, r), f(x, r)) = ( 3
16
rx

3
2 , 3

16
(2− r)x 3

2 ) in (40) gives

(v(x, r), v(x, r)) = (
3r

16π

d

dx

(∫ x

0

t
3
2

x− t
dt

)
,
3(2− r)

16π

d

dx

(∫ x

0

t
3
2

x− t
dt

)
) ,

using the fact ∫ x

0

t
3
2

√
x− t

dt =
3

8
πx2 ,

we have

(v(x, r), v(x, r)) = (
3r

16π

d

dx

(
3

8
πx2
)
,
3(2− r)

16π

d

dx

(
3

8
πx2
)

) ,

then gives:

(v(x, r), v(x, r)) = (
9

64
rx,

9

64
(2− r)x) .

This in turn gives the solutions

(u(x, r), u(x, r)) = (
1

4
3
√

9rx,
1

4
3
√

9(2− r)x) .

obtained upon using (43).

7. Conclusion
In this paper, we considered linear and nonlinear Abel fuzzy integral equations.

The original equation was converted into two crisp linear and nonlinear Abel integral
equations. Then, we applied fuzzy Laplace transforms to obtain of the unique solution
of Abel fuzzy integral equations. It was shown that this new technique is easy to
implement and produces accurate results.
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