
Mathematical Inverse Problems, Vol. 1, No. 2 (2014), 40-57 ISSN 2381-9634

NUMERICAL APPROACH FOR SOLVING A SYSTEM OF DUAL FUZZY
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Abstract. System of fuzzy polynomial equations, play a major role in several applica-
tions in various area such as engineering, physics and economics. In this paper, we
present numerical approach for solving a system of dual fuzzy polynomial equation-
s based on Newton’s method. Also, some numerical examples are given to show the
efficiency of algorithms.
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1. Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced
by Zadeh [25], Dubois and Prade [15]. One of the major applications of fuzzy number
arithmetic is treating system of fuzzy polynomials, several problems in various areas
such as economics, engineering and physics boil down to the solution of a system of
fuzzy polynomial equations.

Abbasbandy [3] improved Newton-Raphson method to solve the nonlinear equation
f(x) = 0 based on modified Adomian’s method, and in [4] he extended Newton’s method
for a system of nonlinear equation by modified Adomian decomposition method.

The concept of fuzzy numbers and arithmetic operation with these numbers were
first introduce and investigated by [13, 15, 20]. One of the major applications of fuzzy
number arithmetic is in nonlinear systems whose parameters are all or partially rep-
resented by fuzzy numbers [14, 17, 19].

Abbasbandy and Asady [5], applied the Newton’s method for solving fuzzy nonlin-
ear equations, f(x) = c and the numerical solution of a fuzzy nonlinear equation and
system of fuzzy nonlinear equations was considered in [7, 21, 6]. Allahviranloo et al
[12] applied the Fixed point method for solving fuzzy nonlinear equations. Tavassoli
et al [24], applied the Newton’s method for solving dual fuzzy nonlinear equations,
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f(x) = g(x) + c. The topic of numerical solution of fuzzy polynomials by fuzzy neu-
ral network investigated by Abbasbandy et al. [8], this method for finding solution to
polynomials of the form a1x+a2x

2+ . . .+anx
n = a0 for x ∈ R (if exists) and a0, a1, . . . , an

are fuzzy numbers and system of s fuzzy polynomial equations such as [9]:

f1(x1, x2, . . . , xn) = a10,
...
fl(x1, x2, . . . , xn) = al0,
...
fs(x1, x2, . . . , xn) = as0,

where x1, x2, . . . , xn ∈ R and all coefficients are fuzzy numbers. Otadi and Mosleh [23]
applied the Adomian decomposition method for solving fuzzy polynomial equation of
the form a1x+ a2x

2+ . . .+ anx
n = a0 where x, a0 and all coefficients are fuzzy numbers.

It is the purpose of this paper to introduce an efficient extension of Newton’s method by
modified Adomian decomposition method for solving (if it exists) system of dual fuzzy
polynomials then Mosleh [22] considered dual fuzzy polynomial equation and applied
the Adomian decomposition method. In this paper, we consider system of dual fuzzy
polynomial equations.

The structure of this paper is organized as follows:
In Section 2, we recall some fundamental results on fuzzy numbers. The proposed
algorithm for finding a fuzzy root (if it exists) of a system of fuzzy polynomials are
discussed in Section 3. This leads us to conclude by giving a comparison with other
methods in Section 4. Numerical examples are given in Section 5.

2. Preliminaries

Definition 1 [18]. A fuzzy number u is a pair (u, u) of functions u(r), u(r); 0 ≤ r ≤ 1

which satisfy the following requirements:
i. u(r) is a bounded monotonic increasing left continuous function on (0, 1] and right

continuous at 0.
ii. u(r) is a bounded monotonic decreasing left continuous function on (0, 1] and right

continuous at 0.
iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by E. A popular fuzzy number is the
trapezoidal fuzzy number u = (x0, y0, σ, β) with interval defuzzifier [x0, y0] and left
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fuzziness σ and right fuzziness β where the membership function is

u(x) =



x−x0+σ
σ

, x0 − σ ≤ x ≤ x0,

1 x ∈ [x0, y0],
y0−x+β

β
y0 ≤ x ≤ y0 + β,

0 otherwise.

Its parametric form is

(1) u(r) = x0 − σ + σr, u(r) = y0 + β − βr.

Let u = (x0, y0, σ, β), be a trapezoidal fuzzy number and x0 = y0, then u is called a
triangular fuzzy number and is denoted by u = (x0, δ, β).

The addition and scaler multiplication of fuzzy numbers are defined by the exten-
sion principle and can be equivalently represented as follows.

For arbitrary u = (u, u), v = (v, v) and k > 0 we define addition (u+v), multiplication
(u.v) and multiplication by scalar k as

(2)

(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v(r),

(u.v)(r) = min{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

(u.v)(r) = max{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

(ku)(r) = ku(r), (ku)(r) = ku(r).

Definition 3. Let u and v be fuzzy numbers with r-level set [u]r = [u1(r), u2(r)] and
[v]r = [v1(r), v2(r)]. We metricize the set of fuzzy numbers by the Hausdorff distance

(3) D(u, v) = supr∈[0,1]max{| u1(r)− v1(r) |, | u2(r)− v2(r) |}.

i.e. D(u, v) is the maximal distance between r level sets of u and v.

3. System of dual fuzzy polynomial equations

Usually, there is no inverse element for an arbitrary fuzzy number u ∈ E, i.e.,
there exists no element v ∈ E such that

u+ v = 0.
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Actually, for all non-crisp fuzzy number u ∈ E1 we have

u+ (−u) ̸= 0.

Therefore, the system of fuzzy polynomial equations

(4)



P1(x1, x2, . . . , xn) = Q1(x1, x2, . . . , xn) + c1,
...
Pl(x1, x2, . . . , xn) = Ql(x1, x2, . . . , xn) + cl,
...
Ps(x1, x2, . . . , xn) = Qs(x1, x2, . . . , xn) + cs,

with
Pl(x1, x2, . . . , xn) = cl =

∑n
i=1 alixi +

∑n
i=1

∑n
j=1 alijxixj+∑n

i=1

∑n
j=1

∑n
k=1 alijkxixjxk + . . .

and
Ql(x1, x2, . . . , xn) = cl =

∑n
i=1 blixi +

∑n
i=1

∑n
j=1 blijxixj+∑n

i=1

∑n
j=1

∑n
k=1 blijkxixjxk + . . . , 1 ≤ l ≤ s,

where x1, x2, . . . , xn and all coefficients are fuzzy numbers, cannot be equivalently re-
placed by the system of fuzzy polynomial equations

(5)



P1(x1, x2, . . . , xn)−Q1(x1, x2, . . . , xn) = c1,
...
Pl(x1, x2, . . . , xn)−Ql(x1, x2, . . . , xn) = cl,
...
Ps(x1, x2, . . . , xn)−Qs(x1, x2, . . . , xn) = cs,

which had been investigated. In the sequel, we will call the system of fuzzy polynomial
equations (4), system of dual fuzzy polynomial equations.

This full form of mathematical description can be represented by a system of partial
quadratic fuzzy polynomials consisting of only two variables in the form of

(6)


P1(x, y) = a1x+ a2y + a3xy + a4x

2 + a5y
2,

Q1(x, y) = b1x+ b2y + b3xy + b4x
2 + b5y

2,

P2(x, y) = h1x+ h2y + h3xy + h4x
2 + h5y

2,

Q2(x, y) = d1x+ d2y + d3xy + d4x
2 + d5y

2,
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where x, y, c1, c2 and all coefficients are fuzzy numbers.
Let 

P1(x, y) = (P1(x, x, y, y; r), P1(x, x, y, y; r)),

Q1(x, y) = (Q1(x, x, y, y; r), Q1(x, x, y, y; r)),

P2(x, y) = (P2(x, x, y, y; r), P2(x, x, y, y; r)),

Q2(x, y) = (Q2(x, x, y, y; r), Q2(x, x, y, y; r)), for r ∈ [0, 1],

with 

P1(x, x, y, y; r) = min{P1(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], ai ∈ [ai(r), ai(r)], i = 1, ..., 5},
P1(x, x, y, y; r) = max{P1(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], ai ∈ [ai(r), ai(r)], i = 1, ..., 5},
Q1(x, x, y, y; r) = min{Q1(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], bi ∈ [bi(r), bi(r)], i = 1, ..., 5},
Q1(x, x, y, y; r) = max{Q1(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], bi ∈ [bi(r), bi(r)], i = 1, ..., 5}
P2(x, x, y, y; r) = min{P2(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], hi ∈ [hi(r), hi(r)], i = 1, ..., 5},
P2(x, x, y, y; r) = max{P2(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], hi ∈ [hi(r), hi(r)], i = 1, ..., 5},
Q2(x, x, y, y; r) = min{Q2(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], di ∈ [di(r), di(r)], i = 1, ..., 5},
Q2(x, x, y, y; r) = max{Q2(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], di ∈ [di(r), di(r)], i = 1, ..., 5}.

The parametric form for any r ∈ [0, 1], is as follows:

(7)


P1(x, x, y, y; r) = Q1(x, x, y, y; r) + c1(r),

P1(x, x, y, y; r) = Q1(x, x, y, y; r) + c1(r),

P2(x, x, y, y; r) = Q2(x, x, y, y; r) + c2(r),

P2(x, x, y, y; r) = Q2(x, x, y, y; r) + c2(r),

where c1 = (c1(r), c1(r)) and c2 = (c2(r), c2(r)). The problem (7) can be reformulated in
an equivalent form as

(8)


F (x, x, y, y; r) = 0,

F (x, x, y, y; r) = 0,

G(x, x, y, y; r) = 0,

G(x, x, y, y; r) = 0,
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where 
F (x, x, y, y; r) = P1(x, x, y, y; r)−Q1(x, x, y, y; r)− c1(r),

F (x, x, y, y; r) = P1(x, x, y, y; r)−Q1(x, x, y, y; r)− c1(r),

G(x, x, y, y; r) = P2(x, x, y, y; r)−Q2(x, x, y, y; r)− c2(r),

G(x, x, y, y; r) = P2(x, x, y, y; r)−Q2(x, x, y, y; r)− c2(r).

Suppose that (α, β, γ, θ) is the solution of (8), i.e.,
F (α, β, γ, θ; r) = 0,

F (α, β, γ, θ; r) = 0,

G(α, β, γ, θ; r) = 0,

G(α, β, γ, θ; r) = 0.

Now if we use the Taylor series of F, F ,G,G about (x, x, y, y), then for each r ∈ [0, 1],

F (x− h, x− k, y − l, y − d; r) = F (x, x, y, y; r)− hF x(x, x, y, y; r)

−kF x(x, x, y, y; r)− lF y(x, x, y, y; r)− dF y(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,

F (x− h, x− k, y − l, y − d; r) = F (x, x, y, y; r)− hF x(x, x, y, y; r)

−kF x(x, x, y, y; r)− lF y(x, x, y, y; r)− dF y(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,

G(x− h, x− k, y − l, y − d; r) = G(x, x, y, y; r)− hGx(x, x, y, y; r)

−kGx(x, x, y, y; r)− lGy(x, x, y, y; r)− dGy(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,

G(x− h, x− k, y − l, y − d; r) = G(x, x, y, y; r)− hGx(x, x, y, y; r)

−kGx(x, x, y, y; r)− lGy(x, x, y, y; r)− dGy(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,

that F x means that, the derivative of F with respect to x and so on. We assume,
of course, that all needed partial derivatives exist and are bounded. Therefore for
sufficiently small h(r), k(r), l(r) and d(r) for each r ∈ [0, 1],

F (x, x, y, y; r)− hF x(x, x, y, y; r)− kF x(x, x, y, y; r)

−lF y(x, x, y, y; r)− dF y(x, x, y, y; r) ≃ 0,

F (x, x, y, y; r)− hF x(x, x, y, y; r)− kF x(x, x, y, y; r)

−lF y(x, x, y, y; r)− dF y(x, x, y, y; r) ≃ 0,

G(x, x, y, y; r)− hGx(x, x, y, y; r)− kGx(x, x, y, y; r)

−lGy(x, x, y, y; r)− dGy(x, x, y, y; r) ≃ 0,

G(x, x, y, y; r)− hGx(x, x, y, y; r)− kGx(x, x, y, y; r)

−lGy(x, x, y, y; r)− dGy(x, x, y, y; r) ≃ 0,
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and hence h(r), k(r), l(r) and d(r) are unknown quantities that can be obtained by solv-
ing the following equations, for each r ∈ [0, 1]

(9) J(x, x, y, y; r)


h(r)

k(r)

l(r)

d(r)

 =


F (x, x, y, y; r)

F (x, x, y, y; r)

G(x, x, y, y; r)

G(x, x, , y, y; r)

 ,

where

J(x, x, y, y; r) =


F x F x F y F y

F x F x F y F y

Gx Gx Gy F y

Gx Gx Gy F y

 (x, x, y, y; r).

The Newton’s method is given by

(10)


xn+1(r) = xn(r) + hn(r),

xn+1(r) = xn(r) + kn(r),

y
n+1

(r) = y
n
(r) + ln(r),

yn+1(r) = yn(r) + dn(r),

where n = 0, 1, 2, . . . and hn(r), kn(r), ln(r), dn(r) are given by (9). For initial guess, one
can use the trapezoidal fuzzy number

x0 = (x(1), x(1), x(1)− x(0), x(0)− x(1)),

y0 = (y(1), y(1), y(1)− y(0), y(0)− y(1)),

and in parametric form

x0(r) = x(1) + (x(1)− x(0))(r − 1),

x0(r) = x(1) + (x(0)− x(1))(1− r),

y
0
(r) = y(1) + (y(1)− y(0))(r − 1),

y0(r) = y(1) + (y(0)− y(1))(1− r).

The iteration (10) will converge to (α, β, γ, θ) if the starting point (x0(r), x0(r) , y0(r), y0(r))

is close enough to (α, β, γ, θ) for 0 ≤ r ≤ 1, local convergence property, see [11] for more
details.

If we use Taylor’s expansion of F (x, x, y, y; r) and F (x, x, y, y; r) to a higher order and
we are looking for h(r), k(r), l(r) and d(r) such as:

[F − hF x − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y
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+2hkF x x + 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)](x, x, y, y; r) ≃ 0,

[F − hF x − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y

+2hkF x x + 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)](x, x, y, y; r) ≃ 0,

[G− hGx − kGx − lGy − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y

+2hkGx x + 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)](x, x, y, y; r) ≃ 0,

[G− hGx − kGx − lGy − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y

+2hkGx x + 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)](x, x, y, y; r) ≃ 0,

given

h(r) = [F − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y + 2hkF x x

+2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)/F x](x, x, y, y; r),

k(r) = [F − hF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y + 2hkF x x

+2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)/F x](x, x, y, y; r),

l(r) = [G− hGx − kGx − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y + 2hkGx x

+2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)/Gy](x, x, y, y; r),

d(r) = [G− hGx − kGx − lGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y + 2hkGx x

+2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)/Gy](x, x, y, y; r),

or

(11)


h(r)

k(r)

l(r)

d(r)

 =


e1

e2

e3

e4

+N




h(r)

k(r)

l(r)

d(r)


 =


e1

e2

e3

e4

+


N1(h, k, l, d)

N2(h, k, l, d)

N3(h, k, l, d)

N4(h, k, l, d)

 ,

where e1 = F
Fx

(x, x, y, y; r), e2 =
F
Fx

(x, x, y, y; r), e3 =
G
Gy

(x, x, y, y; r) and e4 =
G
Gy

(x, x, y, y; r)

are constants andN is a vector quadratic polynomial and for approximating h(r), k(r), l(r)

and d(r), we can apply the multivariable Adomian decomposition method [1].
The Adomian decomposition technique considers representing the solution of (11)

as a series

(12) h =
∞∑
n=0

hn, k =
∞∑
n=0

kn, l =
∞∑
n=0

ln, d =
∞∑
n=0

dn
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and the nonlinear functions are decomposed as

(13) Ni(h, k, l, d) =
∞∑
n=0

Ain(h0, . . . , hn, k0, . . . , kn, l0, . . . , ln, , d0, . . . , dn), i = 1, ..., 4.

where the Ain’s are Adomian’s polynomials given by [3],

Ain =
1

n!

dn

dλn [Ni(
∞∑
j=0

λjhj,

∞∑
j=0

λjkj,

∞∑
j=0

λjlj,

∞∑
j=0

λjdj)]λ=0

for i = 1, ..., 4, j = 0, 1, . . . .

Upon substituting (12), (13) in the (11) yields

h0 = e1, hn+1 = A1n, k0 = e2, kn+1 = A2n,

l0 = e3, ln+1 = A3n, d0 = e4, dn+1 = A4n,

for n = 0, 1, . . . , multivariable polynomials Ain are generated by practical formulae
presented in [1], for i = 1, 2, 3, 4, we have

Ai0 = Ni(h0, k0, l0, d0),

Ain =
∑

φ
h
p1
1

p1!
. . . h

pn
n

pn!
.
k
q1
1

q1!
. . . k

qn
n

qn!
.
l
s1
1

s1!
. . . l

sn
n

sn!
.
d
t1
1

t1!
. . . d

tn
n

tn!

. ∂φ1+φ2+φ3+φ4

∂hφ1∂kφ2∂dφ3∂lφ4
Ni(h0, k0, d0, l0), n ̸= 0,

where φ stands for (p1+2p2+ . . .+npn)+(q1+2q2+ . . .+nqn)+(s1+2s2+ . . .+nsn)+(t1+

2t2+ . . .+ntn) = n, and φ1 = p1+p2+ . . .+pn, φ2 = q1+q2+ . . .+qn, φ3 = s1+s2+ . . .+sn,
φ4 = t1 + t2 + . . .+ tn.

In practice, of course, the sum of the infinite series has to be truncated at some finite
order M. The quantities

∑M
n=0 hn,

∑M
n=0 kn,

∑M
n=0 ln and

∑M
n=0 dn, can thus be reasonable

approximations of the exact solution of (4), provided M is sufficiently large. As M −→
∞, the series converge smoothly toward the exact solution for 0 ≤ r ≤ 1 [2].

Let

(14)

HM = h0 + h1 + . . .+ hM = h0 + A10 + A11 + . . .+ A1M−1,

KM = k0 + k1 + . . .+ kM = k0 + A20 + A21 + . . .+ A2M−1,

LM = l0 + l1 + . . .+ lM = l0 + A30 + A31 + . . .+ A3M−1,

DM = d0 + d1 + . . .+ dM = d0 + A40 + A41 + . . .+ A4M−1,

denote the (M + 1)-term approximations of h, k, l and d, respectively. Since the series
converge very rapidly, then (14) can serve as a practical solution in each iteration.

We will show that the number of terms required to obtain an accurate computable
solution is very small.
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Case 1: For M = 0

h ≃ H0 = h0 =
F

F x

(x, x, y, y; r),

k ≃ K0 = k0 =
F

F x

(x, x, y, y; r),

l ≃ L0 = l0 =
G

Gy

(x, x, y, y; r),

d ≃ D0 = d0 =
G

Gy

(x, x, y, y; r),

α = x− h ≃ x−H0 = x− F

F x

(x, x, y, y; r),

β = x− k ≃ x−K0 = x− F

F x

(x, x, y, y; r),

γ = y − l ≃ y − L0 = y − G

Gy

(x, x, y, y; r),

θ = y − d ≃ y −D0 = y − G

Gy

(x, x, y, y; r)

and 

xn+1 = xn −
F
Fx

(xn, xn, yn, yn; r),

xn+1 = xn − F
Fx

(xn, xn, yn, yn; r),

y
n+1

= y
n
− G

Gy
(xn, xn, yn, yn; r),

yn+1 = yn − G
Gy

(xn, xn, yn, yn; r),

for n = 0, 1, . . . .

Case 2: For M = 1

h1 = A1,0 = N1(h0, k0, l0, d0) = [(
h2
0

2
F x x +

k20
2
F x x +

l20
2
F y y +

d20
2
F y y

+h0k0F x x + h0l0F x y + h0d0F x y + k0l0F x y + k0d0F x y

+l0d0F y y)/F x](x, x, y, y; r),
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k1 = A2,0 = N2(h0, k0, l0, d0) = [(
h2
0

2
F x x +

k20
2
F x x +

l20
2
F y y +

d20
2
F y y

+h0k0F x x + h0l0F x y + h0d0F x y + k0l0F x y + k0d0F x y

+l0d0F y y)/F x](x, x, y, y; r),

l1 = A3,0 = N3(h0, k0, l0, d0) = [(
h2
0

2
Gx x +

k20
2
Gx x +

l20
2
Gy y +

d20
2
Gy y

+h0k0Gx x + h0l0Gx y + h0d0Gx y + k0l0Gx y + k0d0Gx y

+l0d0Gy y)/Gy](x, x, y, y; r),

d1 = A4,0 = N4(h0, k0, l0, d0) = [(
h2
0

2
Gx x +

k20
2
Gx x +

l20
2
Gy y +

d20
2
Gy y

+h0k0Gx x + h0l0Gx y + h0d0F x y + k0l0Gx y + k0d0Gx y

+l0d0Gy y)/Gy](x, x, y, y; r),

where h0 =
F
Fx

(x, x, y, y; r), k0 =
F
Fx

(x, x, y, y; r), l0 =
G
Gy

(x, x, y, y; r) and d0 =
G
Gy

(x, x, y, y; r),
then

α = x− h ≃ x−H1 = x− h0 − A1,0,

β = x− k ≃ x−K1 = x− k0 − A2,0,

γ = y − l ≃ y − L1 = y − l0 − A3,0,

θ = y − d ≃ y −D1 = y − d0 − A4,0

and hence, we have the following iterations:

xn+1 = xn −H1(xn, xn, yn, yn; r),

xn+1 = xn −K1(xn, xn, yn, yn; r),

y
n+1

= y
n
− L1(xn, xn, yn, yn; r),

yn+1 = yn −D1(xn, xn, yn, yn; r),

for n = 0, 1, . . . .

We can also obtain similar relations for M = 2, 3, . . . .

The Adomian decomposition method is simply generalized to more variables and
upper degrees as well.
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4. Numerical examples

We consider some examples for the Adomian decomposition method.
In the computer simulation of this examples, we use the following specifications of the
Adomian decomposition method.
For each fuzzy numbers, we use r = 0, 0.1, . . . , 1, where we calculate the total error of
each iteration by

ei = max{D(xi, xi−1), D(yi, yi−1)}.

Example 1. Consider the system of fuzzy polynomial equations{
2x2 + 2y = x2 + y + (3, 1, 1.75),

2x+ 2y2 = x+ y2 + (5, 1.4375, 2.75),

assume that x and y are positive, then the parametric form of this equation is as
follows: 

2x2(r) + 2y(r) = x2(r) + y(r) + 2 + r,

2x2(r) + 2y(r) = x2(r) + y(r) + 4.75− 1.75r,

2x(r) + 2y2(r) = x(r) + y2(r) + 3.5625 + 1.4375r,

2x(r) + 2y2(r) = x(r) + y2(r) + 7.75− 2.75r.

Initial guess is x0 = (1.25, 0.5, 0.25) and y0 = (1.75, 0.25, 0.5).

For M = 0

h ≃ H0 = h0 =
F

F x

(x, x, y, y; r), k ≃ K0 = k0 =
F

F x

(x, x, y, y; r),

l ≃ L0 = l0 =
G

Gy

(x, x, y, y; r), d ≃ D0 = d0 =
G

Gy

(x, x, y, y; r),

α = x− h ≃ x−H0 = x− F

F x

(x, x, y, y; r),

β = x− k ≃ x−K0 = x− F

F x

(x, x, y, y; r),

γ = y − l ≃ y − L0 = y − G

Gy

(x, x, y, y; r),

θ = y − d ≃ y −D0 = y − G

Gy

(x, x, y, y; r),
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then 

xn+1 = xn −
x2
n+y

n
−(2+r)

2xn
,

xn+1 = xn − x2
n+yn−(4.75−1.75r)

2xn
,

y
n+1

= y
n
− xn+y2

n
−(3.5625+1.4375r)

2y
n

,

yn+1 = yn −
xn+y2n−(7.75−2.75r)

2yn
,

for n = 0, 1, . . . , 6.

By Adomian decomposition method, we obtain the numerical results for M = 0, 1. See
figures 1,2 and table 1 for more details.

Example 2. Consider the system of fuzzy polynomial equations{
3x3 + y = 2x3 + (2.5, 1.375, 4.859375),

2x+ 2y2 = x+ y2 + (3.25, 1.75, 2.5),

assume that x and y are positive, then the parametric form of this equation is as
follows: 

3x3(r) + y(r) = x3(r) + 1.125 + 1.375r,

3x3(r) + y(r) = x3(r) + 7.359375− 4.859375r,

2x(r) + 2y2(r) = x(r) + y2(r) + 1.5 + 1.75r,

2x(r) + 2y2(r) = x(r) + y2(r) + 5.75− 2.5r.

Initial guess is x0 = (0.75, 0.25, 0.25) and y0 = (1.25, 0.25, 0.75).

By Adomian decomposition method, we obtain the numerical results for M = 0, 1. See
figures 3,4 and table 2 for more details.

5. Conclusion

In this paper, we proposed numerical method for solving a system of fuzzy nonlin-
ear equations. Initially we wrote fuzzy nonlinear in a parametric form and then solve
it by Adomian decomposition method.
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Fig. 1. Approximate and analytical solution of example 1 for x.
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Fig. 2. Approximate and analytical solution of example 1 for y.
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Fig. 3. Approximate and analytical solution of example 2 for x.
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Fig. 4. Approximate and analytical solution of example 2 for y.
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M Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6
0 0.2639 0.1336 0.0395 0.0357 0.0103 0.0100

1 0.1831 0.0422 0.0131 0.0092 2.6131× 10−3 2.4532× 10−4

Table 1. The error of Adomian decomposition method.

M Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6
0 1.4531 0.5312 0.1432 0.0339 0.0198 0.0114

1 0.4436 0.1253 0.0635 0.0092 1.5131× 10−3 3.464× 10−4

Table 2. The error of Adomian decomposition method.
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