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AsstracT. System of fuzzy polynomial equations, play a major role in several applica-
tions in various area such as engineering, physics and economics. In this paper, we
present numerical approach for solving a system of dual fuzzy polynomial equation-
s based on Newton’s method. Also, some numerical examples are given to show the
efficiency of algorithms.

2010 Mathematics Subject Classification. 45E10.

Key words and phrases. Fuzzy numbers; System of dual polynomials; Numerical ap-
proach.

1. INTRODUCTION

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced
by Zadeh [25], Dubois and Prade [15]. One of the major applications of fuzzy number
arithmetic is treating system of fuzzy polynomials, several problems in various areas
such as economics, engineering and physics boil down to the solution of a system of
fuzzy polynomial equations.

Abbasbandy [3] improved Newton-Raphson method to solve the nonlinear equation
f(z) = 0 based on modified Adomian’s method, and in [4] he extended Newton’s method
for a system of nonlinear equation by modified Adomian decomposition method.

The concept of fuzzy numbers and arithmetic operation with these numbers were
first introduce and investigated by [13, 15, 20]. One of the major applications of fuzzy
number arithmetic is in nonlinear systems whose parameters are all or partially rep-
resented by fuzzy numbers [14, 17, 19].

Abbasbandy and Asady [5], applied the Newton’s method for solving fuzzy nonlin-
ear equations, f(z) = ¢ and the numerical solution of a fuzzy nonlinear equation and
system of fuzzy nonlinear equations was considered in [7, 21, 6]. Allahviranloo et al
[12] applied the Fixed point method for solving fuzzy nonlinear equations. Tavassoli

et al [24], applied the Newton’s method for solving dual fuzzy nonlinear equations,

©2014 Mathematical Inverse Problems

40



f(z) = g(x) + c. The topic of numerical solution of fuzzy polynomials by fuzzy neu-
ral network investigated by Abbasbandy et al. [8], this method for finding solution to
polynomials of the form a;z + as2® +. .. +a,2" = ao for v € R (if exists) and ag, a1, . .., a,

are fuzzy numbers and system of s fuzzy polynomial equations such as [9]:

fi(zy, 2, ... 20) = ago,
filzy, o, .. x,) = o,
fs(x1, 20, ..., x,) = aso,
where x1, x5, ..., 2, € R and all coefficients are fuzzy numbers. Otadi and Mosleh [23]

applied the Adomian decomposition method for solving fuzzy polynomial equation of
the form a2z + as2? + ... +a,2™ = ag where z, ag and all coefficients are fuzzy numbers.
It is the purpose of this paper to introduce an efficient extension of Newton’s method by
modified Adomian decomposition method for solving (if it exists) system of dual fuzzy
polynomials then Mosleh [22] considered dual fuzzy polynomial equation and applied
the Adomian decomposition method. In this paper, we consider system of dual fuzzy
polynomial equations.
The structure of this paper is organized as follows:

In Section 2, we recall some fundamental results on fuzzy numbers. The proposed
algorithm for finding a fuzzy root (if it exists) of a system of fuzzy polynomials are
discussed in Section 3. This leads us to conclude by giving a comparison with other

methods in Section 4. Numerical examples are given in Section 5.

2. PRELIMINARIES

Definition 1 [18]. A fuzzy number v is a pair (u,u) of functions u(r),u(r);0 <r <1
which satisfy the following requirements:

i. u(r) is a bounded monotonic increasing left continuous function on (0, 1] and right
continuous at 0.

ii. u(r) is a bounded monotonic decreasing left continuous function on (0, 1] and right
continuous at 0.

iii. u(r) <u(r),0 <r <1
The set of all these fuzzy numbers is denoted by £. A popular fuzzy number is the

trapezoidal fuzzy number u = (x¢,yo, 0, 5) with interval defuzzifier [z, yo] and left
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fuzziness o and right fuzziness § where the membership function is

( z—x0+0
P )

Tg— 0 < x < X,

1 S [x(]?y()]a

u\xr) =
) Wty <x <yo+ 5,

0 otherwise.

Its parametric form is
(1) ulry=wzo—o+or, ulr)=yo+ B — pr

Let v = (xo,y0,0,5), be a trapezoidal fuzzy number and =, = yo, then u is called a
triangular fuzzy number and is denoted by u = (zg, d, 3).

The addition and scaler multiplication of fuzzy numbers are defined by the exten-

sion principle and can be equivalently represented as follows.

For arbitrary v = (u,u),v = (v,7) and k > 0 we define addition (u+v), multiplication
(u.v) and multiplication by scalar k as

(u+v)(r) =u(r) +o(r), (utov)(r)=malr)+o(r),

(ww)(r) = min{u(r).v(r), u(r).o(r),u(r).o(r),a(r)o(r)},
(2)

(@) (r) = maz{u(r).w(r), u(r)o(r), a(r).o(r),w(r).o(r)},

(ku)(r) = ku(r), (ku)(r) = ku(r).

Definition 3. Let u and v be fuzzy numbers with r-level set [u]” = [ui(r), us(r)] and
[v]" = [v1(7), v2(r)]. We metricize the set of fuzzy numbers by the Hausdorff distance

(3) D(u,v) = suprepymaz{| ui(r) —vi(r) |, | ua(r) — vo(r) |}
i.e. D(u,v) is the maximal distance between r level sets of u and v.
3. SYSTEM OF DUAL FUZZY POLYNOMIAL EQUATIONS

Usually, there is no inverse element for an arbitrary fuzzy number v € F, i.e.,
there exists no element v € E such that

u+v=0.
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Actually, for all non-crisp fuzzy number v € E! we have
u+ (—u) #0.

Therefore, the system of fuzzy polynomial equations

(

Pi(z1,29,...,2,) = Q1(x1, 22, ..., 2) + €1,
(4) Py, 29, 1) = Qi(x1, 29, ..., 7)) + ¢,
| Po(z1,20,...,0,) = Qs(21, 22, ..., Tp) + Cs,
with
Pi@1, @0, Tn) = 0 = Y0 @i + D DU iyt
D it 2ot Dt Wik Ty +
and
Qu(r,Ta, . mn) = g = D by + Y0 D0 biijriw+
D it 2ot Do Dligkii T+, 1S U< s,
where x1, 25, ..., 2, and all coefficients are fuzzy numbers, cannot be equivalently re-

placed by the system of fuzzy polynomial equations

( Pl(l‘l,l’g,...,In)—Ql(l'l,l'g,...,l'n):Cl,
(5) Pl<$17x27"'7$n)_Ql(xlax%"-?xn):Clv
\ PS(Q:l,‘TQ,...,CUn)_Qs(q:l,xz,---,xn):Cs;

which had been investigated. In the sequel, we will call the system of fuzzy polynomial
equations (4), system of dual fuzzy polynomial equations.
This full form of mathematical description can be represented by a system of partial

quadratic fuzzy polynomials consisting of only two variables in the form of

~

(r,9) = a1 + asy + azry + ayx? + asy?,
1(2,y) = bz + boy + bszy + byx? + bsy?,
5 (2, y) = iz + hoy + hazy + hax® + hsy?,
o(z,y) = diw + doy + dszy + dyz? + dsy?,

(6)

O

z,

O
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where x,y, c1, co and all coefficients are fuzzy numbers.

Let

Py(z,y) = (P2, T, y,7;7), Pz, T, 4,5 7)),

Qi(z,y) = (Qi(z. T,y 7ir), Qi(z, T, Y. 7; 7)),

Py(z,y) = (Po(z, T, y,7;7), Pa2, Ty, 73 7)),

Q2(x,y) = (Qa2(z, T,y, ;7). Q2. T, y. 7)),  for re[0,1],
with

) ) a
P (z,7, y,7;7) = mar{Py(u,v) | u € [z(r),Z(r)],
v € [y(r),y(r)],ai € la;(r),a:(r)], 1 =1,...,5},
Q1(z,7,y,7; 1) = min{Q1(u,v) [ u € [z(r),z(r)],
v e [y(r),yr) b € [b;(r), bi(r)],i = 1,..., 5},
Qi(z,7,y,7;7) = max{Q(u,v) | u € [z(r), z(r)],
bi(r)],i=1,...,5}

v e [y(r),y(r)], b € [bi(r), b
vE [g(r),y(r;],hi - [hi(r(),ﬁi(r) i=1,.,5}
v € [y(r). 7)), hi € [hy(r), hy(r)],i = 1,..., 5},
v e [y(r),y(r)i,di € [di(r)(

Q2(z,7,y,7;7) = n;am{QQ(u,fu) | u € [z(r),Z
\ v e [y(r),5(r),d; € [d;(r),di(r)],i=1,...,5}.

The parametric form for any r € [0, 1], is as follows:

&(&7 T, Y, Vi T’) = &(&, z, Y, Ik T) to (T)7
- Pi(z,7,y,7;7) = Q1(z. T, y, ;1) + (),
Py(z,7,y,7;7) = Qa(z,T,y, 7 1) + co(r),
Pz(Lf,Q@;T) = 2@@7&7@;7”)"‘52(7”):
) )

an equivalent form as

<

8 8 8 8

< e I |

< e <l <l

<

<

(8)

TN TN N TN
=

B IR BRI

QIR ==

I
~



where

F(z,7,y,7;7) = P(2,7,y,7;7) — Qu(2, 7, 5,75 7) — ¢, (7),
F(z,7,y,5;r) = Pi(z,T,y,5;r) — Qu(z, Ty, 75 7) — cu(r),
G(z,7,y,7;7) = Ba(2,7,y,7;7) — Qa(2, 7, 4,75 7) — (7)),
G(z,7,y.7;r) = Pz, 7,y,7:r) — Qa(z, Ty, 55 7) — Ca(r).
Suppose that («, 3,7, 0) is the solution of (8), i.e.,

F(a,B,7,0;r) =0,

F(a,B,7,6;71) =0,

G(a, B,7,0;r) =0,

G(a, B,7,0;1) =

Now if we use the Taylor series of F, F',G, G about (z, 7, y,7), then for each r € [0,1],

;

E(g—h,f—k} y_l y_dr) :F(£7j7yay’r) _hﬁg(gafvgay)r)
—kEs(2,7,y,5:7) = IEy (2,7, y,5;7) — dEg(, yyr)
+O(h2+k2+l2+d2+hk+hl+hd+kl+kd+ld)

F@—hax_k,g_l7y_d7r):F(L%Qaya ) hF( T y )
_ka<£7 Ea g7 y7 T) - ZFQ(£7 f? ga ya T) - ng(L T, gv y7 )
+O(h* + k* + > + d* + hk + hl + hd + kl 4+ kd + 1d) = 0,

Q(g_hﬂf—k7g_l?y_dvr>:Q(£7§7guy77ﬁ)_hgg(£7fugvgvr)
_kgf(z7fag7yyr) _lgg(l7fvg7y7 ’T‘) —de(LT,Qaga T)
+O(h* + k* + > + d* + hk + hl + hd + kl 4+ kd + 1d) = 0,

a(g_hﬁf—k7g_l7§_d7r>:6(£7f7guyur)_ha£(£7fagvg7r)
_kGf(£7 fa g7 y7 T‘) - lag(l7 fa g7 y; ’T‘) - daﬂ(&a f) ga ga T)
+O(h* + k* + 1>+ d* + hk + hl + hd + kl + kd + Id) = 0,

\

that ', means that, the derivative of ' with respect to z and so on. We assume,
of course, that all needed partial derivatives exist and are bounded. Therefore for
sufficiently small i(r), k(r),l(r) and d(r) for each r € [0, 1],

( F(2,7,y,7:7) — hE, (2,7, y,7;7) — kF(2, T, y, 7; 7)
N _lﬁg(gv f_agv Y; T) - dEy(xa Jiga Y; T) =Y,
F(Lf; gvgv T) - h g(gu 57 ya yu 7») - ka(ﬁ fa gvyv T')
_lfi(ia Ea ga y7 T) - dfﬂ(ga f7 ga ya T) = 07

Q(£7 z, Y, Y; T) - hg@(&? z, Y, Y; T) - kgf z,7T, Y, Y; T)
_lQ (£7 T? ga ?77 T) - dgg(§7 fa % y7 T) = 07

a(ga z, Y, Y; ’I°) - ha&(l7 z, Y, Y; ’T‘) - kaﬁ z,T, Y, Y; T)
\ —l@i(g, Ty, 7r) — dGy(z, T, v, 7;7) =0,

'
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and hence h(r), k(r),l(r) and d(r) are unknown quantities that can be obtained by solv-

ing the following equations, for each r € [0, 1]

h(r) F(z,7,y,5;r)
k(r F(z,Z,y, 7.7
9) J(z,7,y,7;7) | - (__gg ) :
= I(r) G(z,T,y,7;7)
d(r) G(z.@,,y,7;7)
where
F,F;F, F;
J"'UJT7 7_;T = “ * g y x7f7 7_7T
(2,7, y,7;7) GGG F, (z,7,y,7;7)
G, Gz G, Fy
The Newton’s method is given by
T, (1) = z,(r) + ha(r),
(10) Tni1 (1) = Tp(r) + kn(r),
_n_H(T) = gn(r) + 1, (r),
Uns1(r) =T (r) + dn(r),
where n = 0,1,2,... and h,(r), k,(r),l,(r), d,(r) are given by (9). For initial guess, one

can use the trapezoidal fuzzy number
zo = (z(1),7(1),z(1) — z(0),7(0) — (1)),

yo = (y(1),7(1), y(1) — (0),3(0) —y(1)),

and in parametric form

zo(r) = z(1) + (z(1) — z(0))(r — 1),

To(r) = (1) + ((0) — (1)) (1 — r),

Yo(r) = y(1) + (y(1) = y(0)(r = 1),

Yo(r) =7(1) + () —g(1)(L — 7).
The iteration (10) will converge to («, 8,7, 0) if the starting point (z,(r), Zo(r) , y, (1), Yo (r))
is close enough to («a, 3,7, 0) for 0 < r < 1, local convergence property, see [11] for more
details.

If we use Taylor’s expansion of F(z,7,y,y;r) and F(z, y;r) to a higher order and

we are looking for A(r), k(r),[(r) and d(r) s ch as:

[E —hE, = kF, —IF, —dFy + (h2F o VR +PE,  + dFy
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+2hkE,  + 21dE, 5 + 2hIF, , + +2hdF, ; + 2kiFy , + +2kdF )](z,7,y,7:7) ~ 0,

Ly g
[F —hF, —kFz—IF, —dFz+ —(h2Fg e+ K Fzz+1PF,  +dFyy
+2hkF, 5 + 2ldFy 5+ 2hlF, gt +2hde 7+ 2kIF; y T +2kdF5 5))(z, T, y,7;7) ~ 0,

G — G, — kG5 — G, — dG; +3 h2G .+ G+ PG d’G.
T =Y y
]

+2hkG, 5 + 201G, ; + 2hIG, , + +2th g+ 2kIG; , + +2kdG )] (2, T, y, ;) ~ 0,
— — _ _ __ 1 _ _ _ _
(G — hGy — kGz — G, — dGy + 5(h?Gz : + K Gsz+ Gy + d°Gyy

+2hkGy 5 + 2dG, 5+ 2hlGy y + +2hdGy 5 + 2kIG |, + +2kdGz 5)](z, T, y, 7i )

12

0,
given
h(r) = [F — kF, —IF, - dF; (h2F ot K F, o+ PE,  + dFy + 2hkEF,
+2ldE, 5+ 2hIE, , ++2hdF, ; + 2kIF, , + +2kdF, ) /F J(z,T,y,7;7),
k(r)=[F —hF,—IF,—dFy+ %(hQE o+ K Fs5+1PFy y+ d°Fy5+ 2hkF, 5
+2ldF, 54 2hlFy y + +2hdF 5 4 2kIF5 , + +2kdF5 ) [F5|(2, T, y,7; 1),
I(r) =[G — hG, — kG5 — dGy + (h2G o F K G5 + PG, + Gy + 2hEG
+2dG, ; + 2hIG, , + +2hdG, ; + 2kIG, | + +2kdG, ;) /G ) (2, T, y, T; 7),
d(r) =[G — hG, — kGz — IGy + = (hQGx o+ KGs 5+ PGy + d°CGy 5+ 2hkG, 5

+21dGy y + 2hIGy  + +20dCy 5 + 2kICy |, + +2kdCy 3) /Gyl (2, T, y, 75 7),

or
h(T) €1 h(?”) €1 N1<h‘7 k7l7d>
k k
(11) (T) _ €2 + N (r) _ €2 4 NQ(h7 kalad) 7
l(rr) €3 l<r) €3 N3<h‘7 kvlvd)
d('l“) €4 d(T) €4 N4(h’7 k) l’ d)
where ¢; = FE(JJ Ty, @; r), ey = f(l’ T,y,7;r) e GG (z,7,y, 77 )and€4 %(L_ Y. 7;7)

and d(r), we can apply the multivariable Adomian decomposition method [1].
The Adomian decomposition technique considers representing the solution of (11)
as a series

(12) h:ihn, k—an, Z_Zln, d = Zd

n=0 n=0
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and the nonlinear functions are decomposed as
(13)  Ni(h k,1,d) = ZAm hos - haskos -k Loy s dos oo dy), =14,

where the A;,’s are Adomian’s polynomials given by [3],

A = 1' ddv ZA%,ZA k],z/\Jl],Z)\Jd
fori=1,..,4,7=0,1,....
Upon substituting (12), (13) in the (11) yields
ho =e1, hny1 = A, ko= ez, kny1 = Ao,
lo=e3, lyy1=A3,, do=-¢ey, dyi1 = Ay,

for n = 0,1,..., multivariable polynomials A;, are generated by practical formulae

presented in [1], for i = 1,2, 3,4, we have

AiO - Ni(hOa kOa lOa dO)v

p q s t
A =30 B Bk L L 4 d,f!
wm ¥ p1 Tpn! T@! T ga! Ts1l T spl Tt T !

gP1te2te3tes
- Oh®10k%20d?3 0lP4 Ni(h07 k07 d07 l0)7 n 7é Oa

where ¢ stands for (p; +2pa+. .. +np,) + (1 +2g2+. . . +nqs) + (s1+282+. . .+ns,) + (L1 +
2ty 4. .. 4nt,) =n,and @y =pr+pat.. A Dn, Pe = GGt Gy o3 = S1HS2 . s,
O =t +ty+ ...+t

In practice, of course, the sum of the infinite series has to be truncated at some finite
order M. The quantities 3. h,, > M k,, S°M 1, and 3> d,, can thus be reasonable
approximations of the exact solution of (4), provided M is sufficiently large. As M —
00, the series converge smoothly toward the exact solution for 0 < r <1 [2].

Let

Hy=ho+hi+...+hy=ho+ A+ An+...+ Ain-a,
Ky =ko+ki+...4+ky==k + A+ Ao + ...+ Aspr1,
Ly=lo+hL+...+ly=1l+ A0+ As1 + ... + Azp—1,

Dy=do+di+...+dy=do+ A+ Ay + ...+ Aspr1,

(14)

denote the (M + 1)-term approximations of h, k, [ and d, respectively. Since the series
converge very rapidly, then (14) can serve as a practical solution in each iteration.
We will show that the number of terms required to obtain an accurate computable

solution is very small.
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Case 1: For M =0

F
hNHO—hO—F:(gafagayaT)a
F
ijKo—kQZF_(£757gvg’r)7
G, _  _
ZZLOZZOZG:(£7x>gayar)>
Y
G
dND()—dO—a_(@;E7Q7y7T)7
Yy
o
azg—h:g—Hozz—F—(Lx,g,%T%
_ _ _ F, _
ﬁ:.flﬁ—kg.fﬁ—Ko:x_:(£7x7g7y7r)a
Fz
G, _  _
’YIQ—ZEQ_LOZQ_G:(zwragvy?r)?
=Y
_ _ G,
0=9—d~y—Dy=7— =(2,%,y,7;7)
G@
and
Lpy1 — Ly — é(imfmgnyym T)
Tp1 = Ty — %(&nvfnagnayna T)a
Y =Y _g<£ JE?%y ;y ;T)7
Zn+1 n Qg n Ip’In
\ @nﬂ - @n - %(imfn,yn;@nﬂ")
forn=0,1,....
Case 2: For M =1
2 2 2
hl = ALO = Nl(h07 kOa lOudO) = [(%Egg + %EEE + %OEQQ
E@?

+hokoF, - + holoﬁg y + hodoﬂg g+ koloF 5 y + kody

+lodo Ly 3)/ Fyl (2.7, y, 55 7),
49



2 — 2 2 2
ki = Ao = Na(ho, ko, lo, do) = [(§Fz o + $Fzz+ 3Fy s+ $F55
+hokoFy 5 4 holoFg y + hodoFy 5 + koloFz y + kodoFy 5

+lodoFy 5)/Fzl(2, T, y,7;7),

Iy = Ao = Ns(ho, ko, lo, do) = [(éG z T %G + 3G, ,+ La,
+hokoG, 7 + holoG,, , —I—hodoG + koloGz , + kodoG,, 5

~x T —:I:y —a:y

+l0d0gg ﬂ)/gg] (&7 Ev g7 y? T)v

2— 2 — 2 — 2 —
dy = Aso = Nulho, ko, lo,do) = [($C o + Gz + 3Gy, + $Cyy

+hokoGy 5 + holoGy y + hodoFy 5 + koloGz y + kodoGy 3

where ho = FE (£7fayay;r 7k0 = ff (gafayaya ?”),lo = GQ (zafayaya 71) anddO = g<£>fay7y> T);
Ea - - =y - Yy -
then

0=y—d~y—Dy=y—dy— A40

and hence, we have the following iterations:

Ty =2, — Hi(2y, Tn Y, Ui 1),
Tpt1 = T — ($nv$my Ui T)s
Ypir =Y, — La(2: Tny, Ui 1),
Uns1 = Un — D@0 T Y, i 7)),

forn=0,1,....
We can also obtain similar relations for M = 2,3, ....
The Adomian decomposition method is simply generalized to more variables and

upper degrees as well.
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4. NUMERICAL EXAMPLES

We consider some examples for the Adomian decomposition method.
In the computer simulation of this examples, we use the following specifications of the

Adomian decomposition method.
For each fuzzy numbers, we use r = 0,0.1,..., 1, where we calculate the total error of

each iteration by

€ = max{D<xi7xi—1)7 D(yia yz‘—1)}.
Example 1. Consider the system of fuzzy polynomial equations

202 4+ 2y = 22 +y + (3,1,1.75),
2z + 2y* = x +y* + (5,1.4375,2.75),

assume that » and y are positive, then the parametric form of this equation is as

follows:
20%(r) +2y(r) = 2*(r) + y(r) + 2 + 1,
27%(r) + 2y(r) = 7%(r) + y(r) + 4.75 — 1.75r,
2¢(r) + 2y*(r) = z(r) + y*(r) + 3.5625 + 1.4375r,
27(r) + 20%(r) = Z(r) + y2(r) + 7.75 — 2.75r.
Initial guess is zo = (1.25,0.5,0.25) and y, = (1.75,0.25,0.5).
For M =0
F F
hNHo—ho—F:(i,f7g,y,7‘)7 kNKO_kO_F_(gaf7gayar)7

F
a=z—h~z—Ho=2—=(@7y7r),
_ _ _F,
ﬁ:x—kzx—[(o:x—F—(g,x,g,y,r),

G, _  _
’7:g_l:g_L0:g_G:<£7'Iagay7r)a
-y
_ _ G,
ezy_d:y_D():y_—_(£7I7g7yar)7
G?



then

( - z3 4y —(2+r)
Lpy1 = Lp — 2z, )
_ _ T2 +7, —(4.75—1.757)
Tpy1 = Ty — 1 0T )

z, +y% —(3.5625+1.4375r)

y =y — =
In+1 In 2y, ’
_ o Tn+72—(7.75—2.75r)

. Ynt1 = Yn — = 2T, )

forn=0,1,...,6.
By Adomian decomposition method, we obtain the numerical results for A/ = 0, 1. See

figures 1,2 and table 1 for more details.

Example 2. Consider the system of fuzzy polynomial equations

323 +y = 223 + (2.5, 1.375,4.859375),
2z + 2y* =z + y* + (3.25,1.75,2.5),
assume that x and y are positive, then the parametric form of this equation is as

follows:
32%(r) +y(r) = 2°(r) + 1.125 + 1.375r,
)

z’(
3T3(r) +y(r) = T(r) + 7.359375 — 4.859375r,
2x(r) + 2y*(r) = z(r) + y*(r) + 1.5 4+ 1.75r,
2Z(r) + 29%(r) = T(r) + 7*(r) + 5.75 — 2.5r.
Initial guess is zo = (0.75,0.25,0.25) and y, = (1.25,0.25,0.75).
By Adomian decomposition method, we obtain the numerical results for M = 0, 1. See

figures 3,4 and table 2 for more details.

5. CoNcCLUSION

In this paper, we proposed numerical method for solving a system of fuzzy nonlin-
ear equations. Initially we wrote fuzzy nonlinear in a parametric form and then solve

it by Adomian decomposition method.
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Fig. 1. Approximate and analytical solution of example 1 for x.

% Initial guess.
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Fig. 2. Approximate and analytical solution of example 1 for y.
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Fig. 3. Approximate and analytical solution of example 2 for x.
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Fig. 4. Approximate and analytical solution of example 2 for y.
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Iter 1 | Tter 2 | Iter 3 | Iter 4 Iter 5 Iter 6
0.2639 | 0.1336 | 0.0395 | 0.0357 0.0103 0.0100
0.1831 | 0.0422 | 0.0131 | 0.0092 | 2.6131 x 1072 | 2.4532 x 10~*

Table 1. The error of Adomian decomposition method.

Iter 1 | Iter 2 | Iter 3 | Iter 4 Iter 5 Iter 6
1.4531 1 0.5312 | 0.1432 | 0.0339 0.0198 0.0114
0.4436 | 0.1253 | 0.0635 | 0.0092 | 1.5131 x 1073 | 3.464 x 10~*

Table 2. The error of Adomian decomposition method.
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