INVERSE LAPLACE TRANSFORM FOR BI-COMPLEX VARIABLES

A. BANERJEE ${ }^{1}$, S. K. DATTA ${ }^{2}$ AND MD. A. HOQUE ${ }^{3}$
${ }^{1}$ Department of Mathematics, Krishnath College, Berhampore, Murshidabad 742101, India
${ }^{2}$ Department of Mathematics, University of Kalyani, Kalyani, Nadia, PIN-741235,India
${ }^{3}$ Gobargara High Madrasah (H. S.), Hariharpara, Murshidabad 742166, India

Abstract

In this paper we examine the existence of bicomplexified inverse Laplace transform as an extension of its complexified inverse version within the region of convergence of bicomplex Laplace transform. In this course we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions. 2010 Mathematics Subject Classification. 44A10. Key words and phrases. Bicomplex numbers, Laplace transform, Inverse Laplace transform.

1. Introduction

The theory of bicomplex numbers is a matter of active research for quite a long time science the seminal work of Segre[1] in search of special algebra.The algebra of bicomplex numbers are widely used in the literature as it becomes a valiable commutative alternative [2] to the non-commutative skew field of quaternions introduced by Hamilton [3] (both are four- dimensional and generalization of complex numbers).

A bicomplex number is defined as

$$
\xi=a_{0}+i_{1} a_{1}+i_{2} a_{2}+i_{1} i_{2} a_{3},
$$

where $a_{0}, a_{1}, a_{2}, a_{3}$ are real numbers, $i_{1}^{2}=i_{2}^{2}=-1$ and

$$
i_{1} i_{2}=i_{2} i_{1},\left(i_{1} i_{2}\right)^{2}=1
$$

The set of bicomplex numbers,complex numbers and real numbers are denoted by C_{2}, C_{1}, and C_{0} respectively. C_{2} becomes a Real Commutative Algebra with identity

$$
1=1+i_{1} \cdot 0+i_{2} \cdot 0+i_{1} i_{2} \cdot 0
$$

with standard binary composition.
There are two non trivial elements $e_{1}=\frac{1+i_{1} i_{2}}{2}$ and $e_{2}=\frac{1-i_{1} i_{2}}{2}$ in C_{2} with the properties $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1} \cdot e_{2}=e_{2} \cdot e_{1}=0$ and $e_{1}+e_{2}=1$ which means that e_{1} and e_{2} are idempotents (some times called also orthogonal idempotents). By the help of the idempotent elements e_{1} and e_{2} any bicomplex number

$$
\xi=a_{0}+i_{1} a_{1}+i_{2} a_{2}+i_{1} i_{2} a_{3}=\left(a_{0}+i_{1} a_{1}\right)+i_{2}\left(a_{2}+i_{1} a_{3}\right)=z_{1}+i_{2} z_{2}
$$

where $a_{0}, a_{1}, a_{2}, a_{3} \in R$,

$$
z_{1}\left(=a_{0}+i_{1} a_{1}\right), z_{2}\left(=a_{2}+i_{1} a_{3}\right) \epsilon C_{1}
$$

can be expressed as

$$
\xi=z_{1}+i_{2} z_{2}=\xi_{1} e_{1}+\xi_{2} e_{2}
$$

where $\xi_{1}\left(=z_{1}-i_{1} z_{2}\right)$ and $\xi_{2}\left(=z_{1}+i_{1} z_{2}\right) \epsilon C_{1}$.
This representation of a bicomplex number is known as the Idempotent Representation of $\xi . \xi_{1}$ and ξ_{2} are called the Idempotent Components of the bicomplex number $\xi=z_{1}+i_{2} z_{2}$, resulting a pair of mutually complementary projections

$$
P_{1}:\left(z_{1}+i_{2} z_{2}\right) \epsilon C_{2} \longmapsto\left(z_{1}-i_{1} z_{2}\right) \epsilon C_{1}
$$

and

$$
P_{2}:\left(z_{1}+i_{2} z_{2}\right) \epsilon C_{2} \longmapsto\left(z_{1}+i_{1} z_{2}\right) \epsilon C_{1} .
$$

The spaces $A_{1}=\left\{P_{1}(\xi): \xi \in C_{2}\right\}$ and $A_{2}=\left\{P_{2}(\xi): \xi \epsilon C_{2}\right\}$ are called the auxiliary complex spaces of bicomplex numbers.

An element $\xi=z_{1}+i_{2} z_{2}$ is singular if and only if $\left|z_{1}^{2}+z_{2}^{2}\right|=0$. The set of singular elements is denoted as O_{2} and defined by $O_{2}=\left\{\xi \in C_{2}: \xi\right.$ is the collection of all -complex multiples of e_{1} and $\left.e_{2}\right\}$

The norm the $\|\cdot\|: C_{2} \longmapsto C_{0}^{+}$(set of all non negetive real numbers) of a bicomplex number is defined as

$$
\|\xi\|=\sqrt{\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}}=\sqrt{a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

2. Laplace transform

Let $f(t)$ be a real valued function of exponential order \mathbf{k}. The coplex version of Laplace Transform [5] of $f(t)$ for $t \geq 0$ can be defined as

$$
L\{f(t)\}=F_{1}\left(\xi_{1}\right)=\int_{0}^{\infty} f(t) e^{-\xi_{1} t} d t
$$

. Here $F_{1}\left(\xi_{1}: \xi_{1} \epsilon C_{1}\right)$ exists and absolutely convergent for $\operatorname{Re}\left(\xi_{1}\right)>k$.Similarly

$$
F_{2}\left(\xi_{2}\right)=\int_{0}^{\infty} f(t) e^{-\xi_{2} t} d t
$$

converges absolutely for $\operatorname{Re}\left(\xi_{2}\right)>k$. Then the bicomplex Laplace Transform [4] of $f(t)$ for $t \geq 0$ can be defined as

$$
L\{f(t)\}=F(\xi)=\int_{0}^{\infty} f(t) e^{-\xi t} d t
$$

. Here $F(\xi)$ exists and convergent in the region

$$
D=\left\{\xi \epsilon C_{2}: \xi=\xi_{1} e_{1}+\xi_{2} e_{2}: \operatorname{Re}\left(\xi_{1}\right)>k, \operatorname{Re}\left(\xi_{2}\right)>k\right\}
$$

in idempotent representation.

3. Inverse Laplace Transform for Bicomplex variables

If $f(t)$ real valued function of exponential order \mathbf{k}, defined on $t \geq 0$, its Laplace transform $F_{1}\left(\xi_{1}\right)$ in bicomplex variable $\xi_{1}=x_{1}+i_{1} y_{1} \epsilon C_{1}$ is simply

$$
\begin{aligned}
F_{1}\left(\xi_{1}\right) & =\int_{0}^{\infty} f(t) e^{-\xi_{1} t} d t=\int_{0}^{\infty} f(t) e^{-\left(x_{1}+i_{1} y_{1}\right) t} d t=\int_{0}^{\infty} e^{-x_{1} t} f(t) e^{-i_{1} y_{1} t} d t \\
& =\int_{0}^{\infty}\left\{e^{-x_{1} t} f(t)\right\} e^{-i_{1} y_{1} t} d t=\int_{-\infty}^{\infty} g(t) e^{-i_{1} y_{1} t} d t=\psi\left(x_{1}, y_{1}\right)
\end{aligned}
$$

which is Fourier transform of $g(t)$ where

$$
g(t)=f(t) e^{-x_{1} t}, t \geq 0 ; \text { and }=0, t<0
$$

in usual complex exponential form.
$F_{1}\left(\xi_{1}\right)$ converges for $\operatorname{Re}\left(\xi_{1}\right)>k$ and

$$
\left|F_{1}\left(\xi_{1}\right)\right|<\infty \Rightarrow\left|\int_{0}^{\infty} f(t) e^{-\xi_{1} t} d t\right|=\int_{-\infty}^{\infty}\left|g(t) e^{-i_{1} y_{1} t}\right| d t=\int_{-\infty}^{\infty}|g(t)| d t<\infty
$$

The later condition shows that $g(t)$ is absotulely integrable. Then by Laplace inverse transform in complex exponential form

$$
g(t)=\frac{1}{2 \pi i_{1}} \int_{-\infty}^{\infty} e^{i_{1} y_{1} t} \psi\left(x_{1}, y_{1}\right) d y_{1} \Rightarrow f(t)=\frac{1}{2 \pi i_{1}} \int_{-\infty}^{\infty} e^{x_{1} t} e^{i_{1} y_{1} t} \psi\left(x_{1}, y_{1}\right) d y_{1}
$$

Now if we integrate along a vertical line then x_{1} is a constant and so for complex variable $\xi_{1}=x_{1}+i_{1} y_{1} \epsilon C_{1}$ (that implies $\left.d \xi_{1}=d y_{1}\right)$ the above inversion formula can be
extended to complex Laplace inverse transform

$$
\begin{align*}
f(t) & =\frac{1}{2 \pi i_{1}} \int_{x_{1}-i_{1} \infty}^{x_{1}+i_{1} \infty} e^{\left(x_{1}+i_{1} y_{1}\right) t} \psi\left(x_{1}, y_{1}\right) d y_{1}=\frac{1}{2 \pi i_{1}} \int_{x_{1}-i_{1} \infty}^{x_{1}+i_{1} \infty} e^{\xi_{1} t} \psi\left(x_{1}, y_{1}\right) d \xi_{1} \\
& =\frac{1}{2 \pi i_{1}} \lim _{y_{1} \rightarrow \infty} \int_{x_{1}-i_{1} y_{1}}^{x_{1}+i_{1} y_{1}} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1} \ldots \ldots \ldots . .(1) \tag{1}
\end{align*}
$$

Here the integration is to be performed along a vertical line in the complex ξ_{1}-plane employing contour integration method.

We assume that $F_{1}\left(\xi_{1}\right)$ is holomorphic in $x_{1}<k$ except for having a finite number of poles $\xi_{1}^{k}, k=1,2,3, \ldots \ldots \ldots \ldots \ldots . n$ therein. Taking $R \rightarrow \infty$ we can guarantee
that all these poles lie inside the contour Γ_{R}. Since $e^{\xi_{1} t}$ never vanishes so the poles of $e^{\xi_{1} t} F\left(\xi_{1}\right)$ and $F_{1}\left(\xi_{1}\right)$ are same.Then by Cauchy residue theorem

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}=2 \pi i_{1} \sum \operatorname{Re} s\left\{e^{\xi_{1} t} F\left(\xi_{1}\right): \xi_{1}=\xi_{1}^{k}\right\}
$$

Now since for ξ on C_{R} and $|F(\xi)|<\frac{M}{|\xi|^{p}}[6]$ some $p>0$ and all $R>R_{0}$,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}=0 \text { for } t>0
$$

so
$\int_{\Gamma_{R}} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}=\int_{C_{R}} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}+\int_{x_{1}-i_{1} R}^{x_{1}+i_{1} R} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}=2 \pi i_{1} \sum \operatorname{Re} s\left\{e^{\xi_{1} t} F\left(\xi_{1}\right): \xi_{1}=\xi_{1}^{k}\right\}$
then for $R \rightarrow \infty$ we obtain

$$
\int_{x_{1}-i_{1} \infty}^{x_{1}+i_{1} \infty} e^{\xi_{1} t} F\left(\xi_{1}\right) d \xi_{1}=2 \pi i_{1} \sum \operatorname{Re} s\left\{e^{\xi_{1} t} F\left(\xi_{1}\right): \xi_{1}=\xi_{1}^{k}\right\}, t>0
$$

We first attend the right half plane $\mathrm{D}_{1}=\operatorname{Re}\left(\xi_{1}\right)>k$ and

$$
\lim _{\operatorname{Re}\left(\xi_{1}\right) \longrightarrow \infty} F_{1}\left(\xi_{1}\right)=0
$$

The inverse Laplace transform of $F_{1}\left(\xi_{1}\right)$ will then a real valued function

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi i_{1}} \int_{x_{1}-i_{1} \infty}^{x_{1}+i_{1} \infty} e^{\xi_{1} t} F_{1}\left(\xi_{1}\right) d \xi_{1} \tag{2}
\end{equation*}
$$

where $\xi_{1}=x_{1}+i_{1} y_{1} \epsilon C_{1}$.
In the right half plane $\mathrm{D}_{2}=\operatorname{Re}\left(\xi_{2}\right)>k$ and

$$
\lim _{\operatorname{Re}\left(\xi_{2}\right) \longrightarrow \infty} F_{2}\left(\xi_{2}\right)=0
$$

the inverse Laplace transform of $F_{2}\left(\xi_{2}\right)$ will be

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi i_{1}} \int_{x_{2}-i_{1} \infty}^{x_{2}+i_{1} \infty} e^{\xi_{2} t} F_{2}\left(\xi_{2}\right) d \xi_{2}, \xi_{2}=x_{2}+i_{1} y_{2} \epsilon C_{1} . . \tag{3}
\end{equation*}
$$

Moreover in each case $f(t)$ is of exponential order \mathbf{k}.
Then

$$
\begin{align*}
f(t) & =f(t) e_{1}+f(t) e_{2}=\frac{1}{2 \pi i_{1}} \int_{D_{1}} e^{\xi_{1} t} F_{1}\left(\xi_{1}\right) d \xi_{1} e_{1}+\frac{1}{2 \pi i_{1}} \int_{D_{2}} e^{\xi_{2} t} F_{2}\left(\xi_{2}\right) d \xi_{2} e_{2} \\
& =\frac{1}{2 \pi i_{1}} \int_{D=D_{1} \cup D_{2}} e^{\xi t} F(\xi) d \xi \ldots \ldots \ldots(4) \tag{4}
\end{align*}
$$

where we use the fact that any real number c can be written as

$$
c=c+i_{1} \cdot 0+i_{2} \cdot 0+i_{1} i_{2} \cdot 0=c_{1} e_{1}+c_{2} e_{2} .
$$

The bicomplex version of inverse Laplace transform thus can be defined as (4). Evidently, here also

$$
\lim _{\operatorname{Re}\left(\xi_{1,2}\right) \rightarrow \infty} F(\xi)=0
$$

and $f(t)$ is of exponential order k. Reversing this proces one can at once obtain $\mathrm{f}(\mathrm{t})$ from the integration defined in (4). It guarantees the existance of inverse Laplace transform.
3.1. Definition. If $F(\xi)$ exists and is convergent in a region $D=D_{1} \cup D_{2}$ which are the right half planes $D_{1,2}=R\left(\xi_{1,2}\right)>k$ together with

$$
\lim _{\operatorname{Re}\left(\xi_{1,2}\right) \longrightarrow \infty} F(\xi)=0
$$

then the inverse Laplace transform of $F(\xi)$ can be defined as

$$
L^{-1}\{F(\xi)\}=\frac{1}{2 \pi i_{1}} \int_{D=D_{1} \cup D_{2}} e^{\xi t} F(\xi) d \xi=f(t)
$$

The integral in each plane D_{1} and D_{2} are taken along any straight line $R\left(\xi_{1,2}\right)>k$. As a result our object function $f(t)$ will be of exponential order k, in the principal value sense.

3.2. Examples.

- If we take $F(\xi) d \xi=\frac{1}{\xi}$, then it's inverse Laplace transform is given by
$f(t)=\frac{1}{2 \pi i_{1}} \int_{D=D_{1} \cup D_{2}} e^{\xi t} F(\xi) d \xi=\frac{1}{2 \pi i_{1}} \int_{D_{1}} e^{\xi_{1} t} F_{1}\left(\xi_{1}\right) d \xi_{1} e_{1}+\frac{1}{2 \pi i_{1}} \int_{D_{2}} e^{\xi_{2} t} F_{2}\left(\xi_{2}\right) d \xi_{2} e_{2}$.
Now

$$
\frac{1}{2 \pi i_{1}} \int_{D_{1}} e^{\xi_{1} t} F_{1}\left(\xi_{1}\right) d \xi_{1}=\frac{1}{2 \pi i_{1}} \int_{x_{1}-i_{1 \infty}}^{x_{1}+i_{1} \infty} e^{\xi_{1} t} \frac{1}{\xi_{1}} d \xi_{1}=2 \pi i_{1} \cdot 1=2 \pi i_{1}
$$

as $\xi_{1}=0$ is the only singular point therein, so

$$
\text { residue }=\lim _{\xi_{1} \longrightarrow 0}(\xi-0) e^{\xi_{1} t} \frac{1}{\xi_{1}}=1 .
$$

In a similar way,

$$
\frac{1}{2 \pi i_{1}} \int_{D_{2}} e^{\xi_{2} t} F_{2}\left(\xi_{2}\right) d \xi_{2}=2 \pi i_{1}
$$

and those leads (4) to

$$
f(t)=e_{1}+e_{2}=1
$$

- In our procedure one may easily check a partial list....to name a few....
- $L^{-1}\left\{\frac{\omega}{\xi^{2}+\omega^{2}}\right\}=\sin \omega t$,
- $L^{-1}\left\{\frac{\xi}{\xi^{2}+\omega^{2}}\right\}=\cos \omega t$,
- $L^{-1}\left\{\frac{\xi+a}{(\xi+a)^{2}+\omega^{2}}\right\}=e^{-a t} \cos \omega t$,
- $L^{-1}\left\{\frac{\omega}{(\xi+a)^{2}+\omega^{2}}\right\}=e^{-a t} \sin \omega t$.

References

[1] C. Segre, ąřLe rappresentazione reali delle forme complesse e gli enti iperalgebrici,ąś Math. Ann. 40(1892), $4131 ́ C 467$.
[2] Spampinato, N., Sulla rappresentazione di funzioni di variabile bicomplessa totalmente derivabili, Ann. Mat. Pura Appli. 14 (1936), 305íC325.
[3] W. R. Hamilton, Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method. Dublin: Hodges and Smith, 1853.
[4] A. Kumar, P. Kumar, Bicomplex Version of Laplace Transform, International Journal of Engineering and Technology, 3(3), 2011, 225-232.
[5] Y.V. Sidorov, M.V. Fedoryuk and M.I. Shabunin, Lectures on the Theory of Functions of Complex Variable, Mir Publishers, Moscow (1985).
[6] Joel L. Schiff, The Laplace transform: theory and applications. Springer, 1999.

