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Abstract. In this paper we examine the existence of bicomplexified inverse Laplace
transform as an extension of its complexified inverse version within the region of con-
vergence of bicomplex Laplace transform. In this course we use the idempotent repre-
sentation of bicomplex-valued functions as projections on the auxiliary complex spaces
of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic
directions.
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1. Introduction

The theory of bicomplex numbers is a matter of active research for quite a long
time science the seminal work of Segre[1] in search of special algebra.The algebra of
bicomplex numbers are widely used in the literature as it becomes a valiable commu-
tative alternative [2] to the non-commutative skew field of quaternions introduced by
Hamilton [3] (both are four- dimensional and generalization of complex numbers).

A bicomplex number is defined as

ξ = a0 + i1a1 + i2a2 + i1i2a3,

where a0, a1, a2, a3 are real numbers, i21 = i22 = −1 and

i1i2 = i2i1, (i1i2)2 = 1.

The set of bicomplex numbers,complex numbers and real numbers are denoted by
C2, C1,and C0 respectively. C2 becomes a Real Commutative Algebra with identity

1 = 1 + i1 · 0 + i2 · 0 + i1i2 · 0
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with standard binary composition.
There are two non trivial elements e1 = 1+i1i2

2
and e2 = 1−i1i2

2
in C2 with the prop-

erties e2
1 = e1, e

2
2 = e2, e1 · e2 = e2 · e1 = 0 and e1 + e2 = 1 which means that e1 and e2

are idempotents (some times called also orthogonal idempotents). By the help of the
idempotent elements e1 and e2 any bicomplex number

ξ = a0 + i1a1 + i2a2 + i1i2a3 = (a0 + i1a1) + i2(a2 + i1a3) = z1 + i2z2

where a0, a1, a2, a3εR,

z1(= a0 + i1a1), z2(= a2 + i1a3)εC1

can be expressed as
ξ = z1 + i2z2 = ξ1e1 + ξ2e2

where ξ1(= z1 − i1z2) and ξ2(= z1 + i1z2)εC1.

This representation of a bicomplex number is known as the Idempotent Represen-
tation of ξ. ξ1 and ξ2 are called the Idempotent Components of the bicomplex number
ξ = z1 + i2z2, resulting a pair of mutually complementary projections

P1 : (z1 + i2z2)εC2 7−→ (z1 − i1z2)εC1

and
P2 : (z1 + i2z2)εC2 7−→ (z1 + i1z2)εC1.

The spacesA1 = {P1(ξ) : ξεC2} andA2 = {P2(ξ) : ξεC2} are called the auxiliary complex
spaces of bicomplex numbers.

An element ξ = z1 + i2z2 is singular if and only if |z2
1 + z2

2 | = 0.The set of singular
elements is denoted as O2 and defined by O2 = {ξεC2 : ξ is the collection of all -complex
multiples of e1 and e2 }

The norm the || · || : C2 7−→ C+
0 (set of all non negetive real numbers) of a bicomplex

number is defined as

||ξ|| =
√
{|z1|2 + |z2|2} =

√
a2

0 + a2
1 + a2

2 + a2
3

2. Laplace transform

Let f(t) be a real valued function of exponential order k. The coplex version of
Laplace Transform [5] of f(t) for t ≥ 0 can be defined as

L{f(t)} = F1(ξ1) =

∞∫
0

f(t)e−ξ1tdt
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. Here F1(ξ1 : ξ1εC1) exists and absolutely convergent for Re(ξ1) > k.Similarly

F2(ξ2) =

∞∫
0

f(t)e−ξ2tdt

converges absolutely for Re(ξ2) > k . Then the bicomplex Laplace Transform [4] of
f(t) for t ≥ 0 can be defined as

L{f(t)} = F (ξ) =

∞∫
0

f(t)e−ξtdt

. Here F (ξ) exists and convergent in the region

D = {ξεC2 : ξ = ξ1e1 + ξ2e2 : Re(ξ1) > k,Re(ξ2) > k}

in idempotent representation.

3. Inverse Laplace Transform for Bicomplex variables

If f(t) real valued function of exponential order k, defined on t ≥ 0 ,its Laplace
transform F1(ξ1) in bicomplex variable ξ1 = x1 + i1y1εC1 is simply

F1(ξ1) =

∞∫
0

f(t)e−ξ1tdt =

∞∫
0

f(t)e−(x1+i1y1)tdt =

∞∫
0

e−x1tf(t)e−i1y1tdt

=

∞∫
0

{e−x1tf(t)}e−i1y1tdt =

∞∫
−∞

g(t)e−i1y1tdt = ψ(x1,y1)

which is Fourier transform of g(t) where

g(t) = f(t)e−x1t, t ≥ 0; and = 0, t < 0

in usual complex exponential form.
F1(ξ1) converges for Re(ξ1) > k and

| F1(ξ1)| <∞ ⇒ |
∞∫
0

f(t)e−ξ1tdt| =
∞∫
−∞

|g(t)e−i1y1t|dt =

∞∫
−∞

|g(t)|dt <∞

The later condition shows that g(t) is absotulely integrable .Then by Laplace inverse
transform in complex exponential form

g(t) =
1

2πi1

∞∫
−∞

ei1y1tψ(x1,y1)dy1 ⇒ f(t) =
1

2πi1

∞∫
−∞

ex1tei1y1tψ(x1,y1)dy1.
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Now if we integrate along a vertical line then x1 is a constant and so for complex
variable ξ1 = x1 + i1y1εC1(that implies dξ1 = dy1) the above inversion formula can
be

extended to complex Laplace inverse transform

f(t) =
1

2πi1

x1+i1∞∫
x1−i1∞

e(x1+i1y1)tψ(x1,y1)dy1 =
1

2πi1

x1+i1∞∫
x1−i1∞

eξ1tψ(x1,y1)dξ1

=
1

2πi1
lim
y1→∞

x1+i1y1∫
x1−i1y1

eξ1tF (ξ1)dξ1...........(1)

Here the integration is to be performed along a vertical line in the complex ξ1-plane
employing contour integration method.

We assume that F1(ξ1) is holomorphic in x1 < k except for having a finite number
of poles ξk1 ,k = 1, 2, 3, ................n therein. Taking R→∞ we can guarantee

that all these poles lie inside the contour ΓR .Since eξ1t never vanishes so the poles
of eξ1tF (ξ1) and F1(ξ1) are same.Then by Cauchy residue theorem

lim
R→∞

∫
ΓR

eξ1tF (ξ1)dξ1 = 2πi1
∑

Re s{eξ1tF (ξ1) : ξ1 = ξk1}.

Now since for ξ on CR and |F (ξ) | < M
|ξ|p [6] some p > 0 and all R > R0,

lim
R→∞

∫
CR

eξ1tF (ξ1)dξ1 = 0 for t > 0

.
so∫

ΓR

eξ1tF (ξ1)dξ1 =

∫
CR

eξ1tF (ξ1)dξ1 +

x1+i1R∫
x1−i1R

eξ1tF (ξ1)dξ1 = 2πi1
∑

Re s{eξ1tF (ξ1) : ξ1 = ξk1}

.

then for R→∞ we obtain

x1+i1∞∫
x1−i1∞

eξ1tF (ξ1)dξ1 = 2πi1
∑

Re s{eξ1tF (ξ1) : ξ1 = ξk1}, t > 0.

We first attend the right half plane D1 =Re(ξ1) > k and

lim
Re(ξ1)−→∞

F1(ξ1) = 0.
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The inverse Laplace transform of F1(ξ1) will then a real valued function

f(t) =
1

2πi1

x1+i1∞∫
x1−i1∞

eξ1tF1(ξ1)dξ1 .............. (2)

where ξ1 = x1 + i1y1εC1 .

In the right half plane D2 = Re(ξ2) > k and

lim
Re(ξ2)−→∞

F2(ξ2) = 0

the inverse Laplace transform of F2(ξ2) will be

f(t) =
1

2πi1

x2+i1∞∫
x2−i1∞

eξ2tF2(ξ2)dξ2, ξ2 = x2 + i1y2εC1 ..............(3)

Moreover in each case f(t) is of exponential order k.
Then

f(t) = f(t)e1 + f(t)e2 =
1

2πi1

∫
D1

eξ1tF1(ξ1)dξ1e1 +
1

2πi1

∫
D2

eξ2tF2(ξ2)dξ2e2

=
1

2πi1

∫
D=D1∪D2

eξtF (ξ)dξ..........(4)

where we use the fact that any real number c can be written as

c = c+ i1 · 0 + i2 · 0 + i1i2 · 0 = c1e1 + c2e2.

The bicomplex version of inverse Laplace transform thus can be defined as (4). Evi-
dently, here also

lim
Re(ξ1,2)−→∞

F (ξ) = 0

and f(t) is of exponential order k . Reversing this proces one can at once obtain f(t)
from the integration defined in (4). It guarantees the existance of inverse Laplace
transform.
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3.1. Definition. If F (ξ) exists and is convergent in a region D = D1 ∪ D2 which are
the right half planes D1,2 = R(ξ1,2) > k together with

lim
Re(ξ1,2)−→∞

F (ξ) = 0

then the inverse Laplace transform of F (ξ) can be defined as

L−1{F (ξ)} =
1

2πi1

∫
D=D1∪D2

eξtF (ξ)dξ = f(t)

The integral in each plane D1and D2 are taken along any straight line R(ξ1,2) > k . As
a result our object function f(t) will be of exponential order k ,in the principal value
sense.

3.2. Examples.
• If we take F (ξ)dξ = 1

ξ
, then it’s inverse Laplace transform is given by

f(t) =
1

2πi1

∫
D=D1∪D2

eξtF (ξ)dξ =
1

2πi1

∫
D1

eξ1tF1(ξ1)dξ1e1 +
1

2πi1

∫
D2

eξ2tF2(ξ2)dξ2e2............(4)

Now

1

2πi1

∫
D1

eξ1tF1(ξ1)dξ1 =
1

2πi1

x1+i1∞∫
x1−i1∞

eξ1t
1

ξ1

dξ1 = 2πi1 · 1 = 2πi1

as ξ1 = 0 is the only singular point therein, so

residue = lim
ξ1−→0

(ξ − 0)eξ1t
1

ξ1

= 1.

In a similar way,
1

2πi1

∫
D2

eξ2tF2(ξ2)dξ2 = 2πi1

and those leads (4) to
f(t) = e1 + e2 = 1.

• In our procedure one may easily check a partial list....to name a few....
• L−1{ ω

ξ2+ω2} = sinωt,

• L−1{ ξ
ξ2+ω2} = cosωt,

• L−1{ ξ+a
(ξ+a)2+ω2} = e−at cosωt,

• L−1{ ω
(ξ+a)2+ω2} = e−at sinωt.
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