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INTEGRAL EQUATIONS BY TRIANGULAR FUNCTIONS METHOD
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Abstract. In this paper, we use parametric form of fuzzy number. Then, we convert
a Volterra-Fredholm fuzzy integral equation to a system of integral equations in crisp
case. A numerical method based on an m-set of general, orthogonal triangular functions
(TF) is proposed to approximate the solution of linear Volterra-Fredholm fuzzy integral
equations. Furthermore, a theorem is proved for convergence analysis.
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1. Introduction

The solutions of integral equations have a major role in the field of science and
engineering. A physical even can be modelled by the differential equation [2, 3], an
integral equation. Since few of these equations cannot be solved explicitly, it is often
necessary to resort to numerical techniques which are appropriate combinations of
numerical integration and interpolation [5, 12, 14].

The topics of fuzzy integral equations (FIE) which growing interest for some time,
in particular in relation to fuzzy control, have been rapidly developed in recent years.
The fuzzy mapping function was introduced by Chang and Zadeh [6]. Later, Dubois
and Prade [8] presented an elementary fuzzy calculus based on the extension principle
also the concept of integration of fuzzy functions was first introduced by Dubois and
Prade [8]. Babolian et al., Abbasbandy et al. in [1, 4] obtained a numerical solution
of linear Fredholm fuzzy integral equations of the second kind. Recently, Otadi and
Mosleh presented an iterative algorithm for solving fuzzy nonlinear integral equations
[15].

In this paper, we present a novel and very simple numerical method based upon
orthogonal triangular functions (TF) sets for solving linear Volterra-Fredholm fuzzy
integral equations.
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2. Preliminaries

In this section the basic notations used in fuzzy calculus and triangular functions
are introduced.

Definition 1. [10, 13] A fuzzy number u is a pair (u, u) of functions u(r) and u(r),
0 ≤ r ≤ 1, which satisfy the following requirements:

i. u(r) is a bounded monotonically increasing, left continuous function on (0, 1] and
right continuous at 0;

ii. u(r) is a bounded monotonically decreasing, left continuous function on (0, 1] and
right continuous at 0;

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.
A crisp number r is simply represented by u(α) = u(α) = r, 0 ≤ α ≤ 1. The set of all

the fuzzy numbers is denoted by E1.
For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R we define addition and

multiplication by k as

(u+ v)(r) = (u(r) + v(r)),

(u+ v)(r) = (u(r) + v(r)),

ku(r) = ku(r), ku(r) = ku(r), if k ≥ 0,

ku(r) = ku(r), ku(r) = ku(r), if k < 0.

Remark 1. [1] Let u = (u(r), u(r)), 0 ≤ r ≤ 1 be a fuzzy number, we take

uc(r) =
u(r) + u(r)

2
,

ud(r) =
u(r)− u(r)

2
.

It is clear that ud(r) ≥ 0, u(r) = uc(r) − ud(r) and u(r) = uc(r) + ud(r), also a fuzzy
number u ∈ E1 is said symmetric if uc(r) is independent of r for all 0 ≤ r ≤ 1.

Remark 2. Let u = (u(r), u(r)), v = (v(r), v(r)) and also k, s are arbitrary real numbers.
If w = ku+ sv then

wc(r) = kuc(r) + svc(r),

wd(r) = |k|ud(r) + |s|vd(r).

Definition 2. [9] For arbitrary fuzzy numbers u, v, we use the distance

D(u, v) = sup0≤r≤1max{|u(r)− v(r)|, |u(r)− v(r)|}

and it is shown that (E1, D) is a complete metric space [17].
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Now, we can express the m-set orthogonal triangular function (TF) vectors as

T1m(t) = [T10(t) T11(t) . . . T1i(t) . . . T1m−1(t)]
T

T2m(t) = [T20(t) T21(t) . . . T2i(t) . . . T2m−1(t)]
T .

The ith component of the vector T1m(t) is defined as

T1i(t) =

{
1− (t−ih)

h
, ih ≤ t < (i+ 1)h

0, otherwise

and the ith component of the vector T2m(t) is defined as

T2i(t) =

{
(t−ih)

h
, ih ≤ t < (i+ 1)h

0, otherwise

where i = 0, 1, 2, . . . , (m− 1) [7].
In general, a time function f(t) of Lebesgue measure may be expanded into an m-

term TF series in t ∈ [0, T ) as

(1) f(t) ' [p0 . . . pi . . . pm−1]T1m + [q0 . . . qi . . . qm−1]T2m = P TT1m +QTT2m

where, the constant coefficients are the samples of function such that pi = f(ih) and
qi = f((i+ 1)h) where i = 0, 1, . . . ,m− 1 [7].

3. Volterra-Fredholm fuzzy integral equations

Consider the linear Volterra-Fredholm fuzzy integral equations (VFFIE) [16]

(2) F (x) = G(x) + λ1

∫ x

a

k1(x, t)F (t)dt+ λ2

∫ b

a

k2(x, t)F (t)dt

where a ≤ x, t ≤ b λ1, λ2 > 0, the kernels k1(x, t) and k2(x, t) are known in L2(R) and
G(x) is a known fuzzy function. Without loss of generality, suppose a = 0 and b = 1.

If G(x) is a fuzzy function these equation may only possess fuzzy solution. Sufficient
conditions for the existence of a unique solution to the VFFIE are given in [16].

Now, we introduce parametric form of a VFFIE with respect to Definition 1. Let
(G(x; r), G(x; r)) and (F (x; r), F (x; r)), 0 ≤ r ≤ 1 are parametric form of G(x) and F (x),
respectively. Then parametric form of VFFIE is as follows:

(3)
F (x; r) = G(x; r) + λ1

∫ x

0
k1(x, t)F (t; r)dt+ λ2

∫ 1

0
k2(x, t)F (t)dt,

F (x; r) = G(x; r) + λ1
∫ x

0
k1(x, t)F (t; r)dt+ λ2

∫ 1

0
k2(x, t)F (t)dt,

0 ≤ x ≤ 1, 0 ≤ r ≤ 1.
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By referring to Remark 2 we have

(4) F c(x; r) = Gc(x; r) + λ1
∫ x

0
k1(x, t)F

c(t; r)dt+ λ2
∫ 1

0
k2(x, t)F

c(t; r)dt,

0 ≤ x ≤ 1, 0 ≤ r ≤ 1

(5) F d(x; r) = Gd(x; r) + λ1
∫ x

0
|k1(x, t)|F d(t; r)dt+ λ2

∫ 1

0
|k2(x, t)|F d(t; r)dt,

0 ≤ x ≤ 1, 0 ≤ r ≤ 1.

It is clear that we must solve two crisp Volterra-Fredholm integral equations provided
that each of Eqs. (4) and (5) have solution. By using Eq. (1), we can be approximate
F c(x; r) and F d(x; r) as

F c(x; r) ' (P c(r))TT1m(x) + (Qc(r))TT2m(x) = F c
m(x; r)

and
F d(x; r) ' (P d(r))TT1m(x) + (Qd(r))TT2m(x) = F d

m(x; r)

that (P c(r))T = [pc0(r) . . . pci(r) . . . pcm−1(r)] and so on. We suggest the collocation
points as si = ih where i = 0, 1, . . . ,m − 1 and h = T

m
. Now we have two system of

m equations and (m + 1) unknowns which can be solved for the coefficients pci , qci , pdi
and qdi . Obviously, by using a conventional quadrature rules, such as Gaussian rule,
we can reduce the computational efforts. A powerful search technique can be used to
obtain the optimal pci , qci , pdi and qdi with maximum validity in determining desirable
approximate [7], using MATLAB software.

Assume (C[J ], ‖‖) the Banach space of all continuous functions on J = [0, 1] with
norm ‖f(x)‖ = max∀x∈J |f(x)|. Let |k1(x, t)| ≤M1 and |k2(x, t)| ≤M2, ∀a ≤ x, t ≤ b [11].

Theorem 1. The VFFIE (2) by using TF approximations converges if 0 < α < 1.

Proof.

‖F †m − F †‖ = max∀x∈J | F †m(x; r)− F †(x; r) |≤ max∀x∈J(| λ1 |∫ x

0
| k1(x, t) || F †m(x; r)− F †(x; r) | dt+ | λ2 |

∫ 1

0
| k2(x, t) |

| F †m(x; r)− F †(x; r) | dt) ≤ (| λ1 |M1x+ | λ2 |M2)

max∀x∈J | F †m(x; r)− F †(x; r) |= αmax∀x∈J | F †m(x; r)− F †(x; r) |

where † means we have this equation for c and d together, independently. We get
(1−α)‖F †m−F †‖ ≤ 0 and choose 0 < α < 1, by increasing m, it implies ‖F †m−F †‖ −→ 0

as m −→∞. Also we have

(6) max∀x∈J | F c
m(x; r)− F c(x; r) |≤ αmax∀x∈J | F c

m(x; r)− F c(x; r) |,
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(7) max∀x∈J | F d
m(x; r)− F d(x; r) |≤ αmax∀x∈J | F d

m(x; r)− F d(x; r) | .

By (6), (7) and Remark 1 we have

max∀x∈J | Fm(x; r)− F (x; r) |≤ αmax∀x∈J | F c
m(x; r)− F c(x; r) | +

αmax∀x∈J | F d
m(x; r)− F d(x; r) |,

max∀x∈J | Fm(x; r)− F (x; r) |≤ αmax∀x∈J | F c
m(x; r)− F c(x; r) | +

αmax∀x∈J | F d
m(x; r)− F d(x; r) |,

hence for all r ∈ [0, 1]

max{max∀x∈J [| Fm(x; r)− F (x; r) |, | Fm(x; r)− F (x; r) |]} ≤
αmax∀x∈J | F c

m(x; r)− F c(x; r) | +αmax∀x∈J | F d
m(x; r)− F d(x; r) |,

and then
max∀x∈JD(Fm(x), F (x)) ≤ supr∈[0,1][αmax∀x∈J | F c

m(x; r)− F c(x; r) | +
αmax∀x∈J | F d

m(x; r)− F d(x; r) |]

and this completes the proof. �

4. Numerical examples

To illustrate the technique proposed in this paper, consider the following examples.

Example 4.1. We consider the following linear Volterra-Fredholm fuzzy integral e-
quation

F (x) = G(x) +

∫ x

0

F (t)dt+

∫ 1

0

(x2 − x)F (t)dt, 0 ≤ x, t ≤ 1,

where G(x) = (r+(x2−x)r(1− e), (2− r)+ (x2−x)(2− r)(1− e)) and the exact solution
in this case is given by F (x) = (rex, (2− r)ex), 0 ≤ r ≤ 1.

For this example, we consider m = 4. The exact and obtained solution of linear
VFFIE in this example at x = 0.5 are shown in figure 1.

Figure 1. Compares the exact and obtained solutions with m = 4.
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Example 4.2. We consider the following linear Volterra-Fredholm fuzzy integral e-
quation

F (x) = G(x) +

∫ x

0

(−t)F (t)dt+
∫ 1

0

x

2
F (t)dt, 0 ≤ x, t ≤ 1,

where G(x) = (x(r2+r)− x
4
(r2+r)+ x3

3
(4−r3−r), x(4−r3−r)− x

4
(4−r3−r)+ x3

3
(r2+r))

and the exact solution in this case is given by F (x) = ((r2+r)x, (4−r3−r)x), 0 ≤ r ≤ 1.

For this example, we consider m = 4. The exact and obtained solution of linear
VFFIE in this example at x = 0.5 are shown in figure 2.

Figure 2. Compares the exact and obtained solutions with m = 4.

5. Summary and conclusions

In this paper, a numerical method based on a complementary pair of orthogonal
TF sets was developed to approximate the solution of linear VFFIE. The structural
properties of TFs are used to reduce Volterra-Fredholm fuzzy integral equations to a
system of linear equations. The approximate solutions obtained by MATLAB software
are shown the validity and efficiency of the proposed method. Extensions to the case
of more general nonlinear VFFIE equations are left for future studies. This paper will
be utilized as a good starting point for such extensions.
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